
JPL/NISAR Radar Course
HW9 Solutions
November 3, 2023

Problem 1
Download files slc1.dat and slc2.dat from class web area under homework 9. These images have
been processed using motion compensation processor that removes the flat-Earth term
automatically, and produces co-registered images. Cross multiply the two images and form the
interferogram, take 4 looks in range and 16 in azimuth, and submit an image. Your interferogram
should resembles topography of Hawaii with the flat (curved) Earth term removed.

The amplitudes of the single-look complex images look very similar. We display multilooked
SLCs here. You can make out some features – a coastline running roughly horizontal through the
image, and some of the land features below it. The images are very similar but not identical,
which we expect: they are in the same coordinate system from two different acquisition times,
and the surface has changed some in that time.

Question 1: SLC1 Amplitude

500 1000 1500
Range Bin (multilooked)

200

400

600

Az
im

ut
h

B
in

 (m
ul

til
oo

ke
d) Question 1: SLC2 Amplitude

500 1000 1500
Range Bin (multilooked)

200

400

600

Az
im

ut
h

B
in

 (m
ul

til
oo

ke
d)

Non-Multilooked
Interferogram

2000 4000 6000
Range Bin

2000

4000

6000

8000

10000

12000

Az
im

ut
h

B
in

-3

-2

-1

0

1

2

3

Ph
as

e
(ra

di
an

s)

Multilooked Interferogram
(4 Range, 16 Azimuth)

500 1000 1500
Range

200

400

600

Az
im

ut
h

-2

0

2

Ph
as

e
(ra

di
an

s)

We display the full-resolution and multi-looked interferograms here. While both contain some
noise, the phase signal is clearer to pick out in the right image after multilooking (spatial
filtering).

This interferogram contains two types of phase signals that we’re identifying here: one is due to
topography. Right now, we’re assuming all the rays hit a smooth earth. In reality, some of them
are travelling the distance to the top of the topography rather than to the smooth earth surface
(a.k.a. approximately sea level). This signal will appear to be correlated with topography, and
there will be dense fringes around steeper slopes.

The other signal contained here is the deformation, the result of the land surface changing due to
e.g. a volcanic eruption. Right now, it’s hard to pick it out because the signal due to topography
is so strong.

The dimensions of the image after taking 4 range looks and 16 azimuth looks should be 1536
range bins and 750 azimuth bins.

Problem 2

The DEM file displays the elevation in meters.

The area of 0 elevation is the ocean in dark blue.

The area in bright red is the corner of Mauna Kea.

We multilook the DEM to match the size of the original image.

DEM

2000 4000 6000
Range Bin

2000

4000

6000

8000

10000

12000

Az
im

ut
h

B
in

0

500

1000

1500

2000

2500

3000

3500

El
ev

at
io

n
(m

)

Multilooked DEM

500 1000 1500
Range

200

400

600Az
im

ut
h

0

1000

2000

3000

El
ev

at
io

n
(m

)

Problem 3
Compute the topographic phase term as follows. Referring to the figure above, calculate the unit
look vectors to both the elevated point at each pixel location and also to the same pixel location
but at zero elevation. (Hint: you will find it most accurate to use the curved- Earth geometry in
your construction). The two unit vectors will be almost the same, but slightly different. Simulate
the radar phase measurement by deriving the component of the baseline vector for each line in
the line-of-sight direction to each pixel using the two unit vectors you just created. You will have
two phases, one for the elevated pixel and one for the pixel at ground level. The difference of
these is the topographic phase. Submit an image of the simulated topo phase.

We want to calculate the unit vectors 𝑢"! and 𝑢"" along the smooth-earth and DEM-earth look
vectors. First, we want to calculate the set of ranges 𝜌 in each of our range bins. We know the
slant range bin spacing from our previous homework involving range: Δ# =

$
%&!

. Then,
𝜌 = 𝑟! + (𝑛 − 1)Δ# 		,					𝑛 = 0, 1, …𝑛𝑟𝑎𝑛𝑔𝑒 − 1

We calculate the angles 𝜃!, 𝜃" from the Law of
Cosines. We do this for the inner triangle connecting
the satellite, the smooth Earth, and the center of the
Earth; and for the outer triangle connecting the
satellite, the Earth surface with topography, and the
center of the Earth.

cos 𝜃! =
𝜌% + (𝑟' + ℎ)% − 𝑟'%

2	(𝜌)(𝑟' + ℎ)

cos 𝜃" =
𝜌% + (𝑟' + ℎ)% − (𝑟' + 𝑑)%

2	(𝜌)(𝑟' + ℎ)

Next, we want to find the y and z components of 𝜌.

We can see that to project the directions of our look
vectors �⃗� into the 𝑦 − 𝑧 coordinate system, it’s a
simple matter of trigonometry using our angles 𝜃!, 𝜃"

Then our unit vector components are as follows:

𝑢"!,)	 = sin 𝜃!
𝑢"!,+	 = cos 𝜃!
𝑢"",)	 = sin 𝜃"
𝑢"",+	 = cos 𝜃"

!"!

#"
#!

$
$

%#
%#

%#

&

ℎ

(

!""

)

*

Next, we want to project the baseline vectors onto the unit vectors. We have read in the baselines
file: the first column is the number of lines, the second is the baseline component in the y
direction 𝐵), and the third is the baseline component in the z direction 𝐵+.
We want

𝐵A⃗ ! = 𝐵A⃗ 	 ∙ 𝑢"! = 𝐵)𝑢"!,) + 𝐵+𝑢"!,+
𝐵A⃗ " = 𝐵A⃗ 	 ∙ 𝑢"" = 𝐵)𝑢"",) + 𝐵+𝑢"",+

Then we subtract the projected baseline vectors and convert to phase. We first find the phase that
we’ll put into our complex exponential. This is correct modulo 2pi but could be >2pi:

𝜙,-.-,/01-/0"'" = −
4𝜋
𝜆 G𝐵A⃗ " − 𝐵A⃗ !H

𝑠𝑖𝑔𝑛𝑎𝑙,-.- = exp(−𝑗𝜙,-.-,/01-/0"'")
We put the phase of the signal in the exponent, then

𝜙,-.- = 𝑎𝑛𝑔𝑙𝑒G𝑠𝑖𝑔𝑛𝑎𝑙,-.-H = 𝑎𝑛𝑔𝑙𝑒 Pexp P𝑗	 ∙
4𝜋
𝜆 G𝐵A⃗ " − 𝐵A⃗ !HQQ

I use the MATLAB/Python angle function to find the phase from the complex exponential. This
is also equivalent to:

𝑎𝑛𝑔𝑙𝑒(𝑥) = atanP
𝐼𝑚(𝑥)
𝑅𝑒(𝑥)Q

We find the topographic phase:

How to tell if this is correct?

The lines should follow the topography of the DEM, and be closer together where the DEM is
changing more rapidly and more spaced out over relatively unchanging (flat) parts of the DEM.

Modeled Topographic Phase
No Looks

2000 4000 6000
Range Bin

2000

4000

6000

8000

10000

12000

Az
im

ut
h

B
in

-3

-2

-1

0

1

2

3

Ph
as

e
(ra

di
an

s)

Modeled Topographic Phase
Multilooked

500 1000 1500
Range

200

400

600

Az
im

ut
h

-2

0

2

Ph
as

e
(ra

di
an

s)

Problem 4
Using the simulated phase, correct the phase of each point in the interferogram for
topography. This should yield a map of the deformation. Submit this image.

To compute the deformation map, we take the whole interferogram “int” and multiply it by the
topographic phase correction, which I’ve been calling 𝑠𝑖𝑔𝑛𝑎𝑙,-.-.

I opted to do the corrections on the multilooked interferogram, so I have my interferogram
ml_int and my multilooked topo signal ml_signaltopo. Then the deformation interferogram
ml_defo_int is:

𝑚𝑙"'&-"#$ = 𝑚𝑙_𝑖𝑛𝑡	 ∗ 𝑐𝑜𝑛𝑗(𝑚𝑙_𝑠𝑖𝑔𝑛𝑎𝑙,-.-)
𝑚𝑙"'&-"#$ = 𝑚𝑙_𝑖𝑛𝑡	 expG−𝑗	𝜙,-.-H

∗

Deformation Interferogram
Topographic Phase Removed

200 400 600 800 1000 1200 1400
Range

200

400

600

Az
im

ut
h

-3

-2

-1

0

1

2

3

Ph
as

e
(ra

di
an

s)

Problem 5
Now examine the deformation signature. Using the measured phases estimate the size of the
deformation at several points where significant deformation is occurring. How much
deformation in cm is occurring over the time of this interferogram? Is it related to features seen
in the image?
The largest deformation signal is centered at (range, azimuth) = (600,400) in the multilooked
image, with fringes around it in concentric contours. The best we can do is decide on a relative
deformation magnitude at this point, relative to a point we assume has zero displacement. I
decide on that point in the following image. This is a wide fringe, and in addition, it has
symmetry traveling in the northeast to southwest direction, implying it may be some kind of
minimum. From here, there are about 3-3.5 phase cycles to the point of maximum
deformation. Each phase cycle represents 2𝜋 of phase change, which equals 𝜆/2 of deformation

in the radar line-of-sight (LOS):

]𝜙"'&] = 2𝜋 =
4𝜋
𝜆 𝛿𝜌𝑣 → 	𝛿𝜌 =

𝜆
2	

Thus, the maximum deformation that occurred between our two scene acquisitions is about 41
cm in the LOS direction, relative my zero-deformation point. In order to know if the ground
moved up or down, we would need to be told whether the second slc was before or after the
first slc. I have also identified a few other deformation magnitudes in the image below. Based
on what we know about this area (a volcano in Hawaii), we can expect that the deformation is
due to subsurface activity of the volcano. These points of deformation correspond well with
what look like lava flows in the amplitude image. But note that the deformation is likely due to
current subsurface pressure/stress changes (from magma activity), rather than “displacements”
by the addition of surface material from a lava flow (which would likely cause decorrelation).
Pretty cool stuff!

Deformation Interferogram
Topographic Phase Removed

200 400 600 800 1000 1200 1400
Range

200

400

600

Az
im

ut
h

-3

-2

-1

0

1

2

3

Ph
as

e
(ra

di
an

s)

0cm
~3.5cm

~23.6cm

~41cm

MATLAB code:
clc; clearvars; close all; % Clear old variables
nr = 6144; % Number of range bins
naz = 12000; % Number of lines in azimuth

%% Howard's colormap
r = zeros(360,1);
g = r;
b = r;
for i=1:120
 r(i)=i*2.13*155/255+100;
 g(i)=(120-i)*2.13*155/255+100;
 b(i)=255;
end
for i=121:240
 ival=i-121;
 r(i)=255;
 g(i)=ival*2.13*155/255+100;
 b(i)=(239-i)*2.13*155/255+100;
end
for i=241:360
 ival=i-241;
 r(i)=(359-i)*2.13*155/255+100;
 g(i)=255;
 b(i)=ival*2.13*155/255+100;
end
r(r>255)=255;
g(g>255)=255;
b(b>255)=255;
map = [r/255 g/255 b/255];
% figure; image(1:360) % Optional code to display range of colors
% colormap(map)
% colorbar
%%

% open slc1 image file and create complex image
fid = fopen('slc1.dat','r');
slc1 = fread(fid,[nr*2, naz],'float');
fclose(fid);
slc1 = slc1(1:2:end,:) + 1i*slc1(2:2:end,:);

% open slc2 image file and create complex image
fid = fopen('slc2.dat','r');
slc2 = fread(fid,[nr*2, naz],'float');
fclose(fid);
slc2 = slc2(1:2:end,:) + 1i*slc2(2:2:end,:);

% Take looks to display SLCs
aslc1 = sqrt(multilook16x4(slc1,nr,naz));
aslc2 = sqrt(multilook16x4(slc2,nr,naz));

% Display the two SLCs
figure
subplot(1,2,1);
imagesc(abs(aslc1'));

set(gca,'fontsize',16);
title('Question 1: SLC1 Amplitude');
xlabel('Range Bin (multilooked)');
ylabel('Azimuth Bin (multilooked)');
colormap(gray);
caxis([0 mean(mean(abs(aslc1)))*3]);
axis image
subplot(1,2,2)
imagesc(abs(aslc2'));
set(gca,'fontsize',16);
title('Question 1: SLC2 Amplitude');
xlabel('Range Bin (multilooked)');
ylabel('Azimuth Bin (multilooked)');
colormap(gray)
caxis([0 mean(mean(abs(aslc2)))*3]);
axis image

% Form the interferogram
interferogram = slc1.*conj(slc2);

% Take Looks in the interferogram
az_looks = 16;
r_looks = 4;
ml_int = multilook16x4(interferogram,nr,naz);

figure;
subplot(1,2,1);
imagesc(angle(interferogram).');
set(gca,'fontsize',16)
title({'Non-Multilooked'},{'Interferogram'});
xlabel('Range Bin');
ylabel('Azimuth Bin');
colormap(map)
hC = colorbar;
ylabel(hC,'Phase (radians)')
axis image;
subplot(1,2,2)
imagesc(angle(ml_int).')
set(gca,'fontsize',16)
title({'Multilooked Interferogram'},{'(8 Range, 16 Azimuth)'});
xlabel('Range');
ylabel('Azimuth');
colormap(map)
hC = colorbar;
axis image
ylabel(hC,'Phase (radians)')

% Optional line: clears the full-res interferogram and SLCs
% to save space in your computer memory if needed
clear interferogram slc1 slc2

%% Load and multilook DEM
% open the DEM file and take looks to match interferogram

fid = fopen('slc.dem','r');
dem = fread(fid,[nr,naz],'float');
fclose(fid);

% Multilook the DEM
ml_dem = multilook16x4(dem,nr, naz);

% Plot the full-res and multilooked DEM
figure
subplot(1,2,1)
imagesc(dem.');
set(gca,'fontsize',16)
title('DEM');
xlabel('Range Bin');
ylabel('Azimuth Bin');
colormap(jet);
hC = colorbar;
ylabel(hC,'Elevation (m)');
axis image;
subplot(1,2,2);
imagesc(ml_dem.');
set(gca,'fontsize',16)
title('Multilooked DEM');
xlabel('Range');
ylabel('Azimuth');
colormap(jet);
h = colorbar;
axis image;
ylabel(h,'Elevation (m)')

% open the baseline file - we can use load to load a .txt file.
baselines = load('slc.baseline');
% Get the components on the Baselines for each pixel
By = baselines(:,2)';
Bz = baselines(:,3)';

% Radar Parameters
r_e = 6343837.1345648393; % radius of earth (m)
h = 700000; % altitude of the satellite (m)
r0 = 741489; % range to first pixel (m)
fs = 32e6; % range sampling frequency (Hz)
lambda = 0.236057; % wavelength of system (m)
c = 2.99792458e8; % speed of light (m/s)
Delta_r_bin_slant = c/(2*fs);

% Unit Vectors for each each pixel (smooth earth points)
% Each subsequent range bin is Delta_r further in slant range
rho = zeros(nr,1);
for n=1:nr
 rho(n) = r0 + (n-1)*Delta_r_bin_slant;
end

% Find theta_0 and theta_d from law of cosines
theta0 = acos(((r_e+h)^2 + rho.^2 - r_e^2)./(2*(r_e+h)*rho));

thetad = acos(((r_e+h)^2 + rho.^2 - (r_e+dem).^2)./(2*(r_e+h)*rho));
% Use trigonometry to find unit vectors along rho
u0_y = sin(theta0);
u0_z = cos(theta0);
ud_y = sin(thetad);
ud_z = cos(thetad);
% Project baselines onto unit vectors at each pixel
proj_B0 = (By.*u0_y + Bz.*u0_z);
proj_Bd = (By.*ud_y + Bz.*ud_z);

% Calculate topographic phase component from projected baselines
% Topographic phase is found from the difference between the lengths
% of the assumed (no-topography) and real paths
% This phase will not be wrapped between 0 and 2*pi
topo_phase = (proj_Bd-proj_B0)*-4*pi/lambda;

% Find the proportion of the signal due to topographic delays
% This appears as a phase change.
topo_signal = exp(-1i*topo_phase);

% Multilook the topographic phase signal
ml_topo_signal = multilook16x4(topo_signal,nr,naz);

% Display the topographic phase
figure
subplot(1,2,1)
imagesc(angle(topo_signal).');
set(gca,'fontsize',16);
title({'Modeled Topographic Phase'},{'No Looks'});
xlabel('Range Bin');
ylabel('Azimuth Bin');
colormap(map)
hC = colorbar;
ylabel(hC,'Phase (radians)');
axis image;
subplot(1,2,2)
imagesc(angle(ml_topo_signal).');
set(gca,'fontsize',16);
title({'Modeled Topographic Phase'},{'Multilooked'});
xlabel('Range');
ylabel('Azimuth');
colormap(map);
hC = colorbar;
ylabel(hC,'Phase (radians)');
axis image

% Optional: clear the full-res topo signal to save computer space
clear topo_signal;

% Adjust the deformation phase by the topo phase
deformation_phase = ml_int .* conj(ml_topo_signal);

% Show the interferogram of deformation
figure;
imagesc(angle(deformation_phase).');

set(gca,'fontsize',16);
title({'Deformation Interferogram'},{'Topographic Phase Removed'});
xlabel('Range');
ylabel('Azimuth');
colormap(map);
hC = colorbar;
ylabel(hC,'Phase (radians)');
axis image

%% Function to multilook image (16 looks in range, 4 in azimuth)
function ml_img = multilook16x4(image, width, nlines)
 img_temp=reshape(sum(reshape(image,4,width/4,nlines)),width/4,nlines);

ml_img=reshape(sum(reshape(img_temp',16,nlines/16,width/4)),nlines/16,width
/4)/4/16;
 ml_img = ml_img';
end

JPL-NISAR Radar Short Course HW10
Elizabeth Wig November 1, 2023

In [1]:

In [2]:

import numpy as np
import matplotlib.pyplot as plt

Howard's function to display visually appealing interferograms
def dismph(image, nr, naz): # Function takes complex image, size in range and azimuth

upramp = np.linspace(100,255,120)/255
dnramp = np.linspace(255,100,120)/255
oneramp = np.ones(120)
zeroramp = np.zeros(120)
r = np.zeros(360)
g = np.zeros(360)
b = np.zeros(360)
r[0:120]=upramp; r[120:240]=oneramp; r[240:360]=dnramp
g[0:120]=dnramp; g[120:240]=upramp; g[240:360]=oneramp
b[0:120]=oneramp; b[120:240]=dnramp; b[240:360]=upramp

fig = plt.figure(figsize=(10, 10))
phase = np.angle(image)*180./np.pi

exponent=0.3
scale = 1
mag=np.power(np.absolute(image),exponent)
ampsum=sum(sum(mag))
ampi=naz*nr
ampi=np.count_nonzero(mag)
scalemag = (scale*150/(ampsum/ampi))/256

mag = np.clip(mag*scalemag,0,1)

icolor = phase.astype(int)
icolor = np.where(icolor < 0, icolor+360, icolor)
icolor = icolor.clip(max=359)

load color table values for image
rgb = np.zeros((nr,naz,3))
rgb[:,:,0] = r[icolor[:,:]]*mag
rgb[:,:,1] = g[icolor[:,:]]*mag
rgb[:,:,2] = b[icolor[:,:]]*mag

plt.imshow(rgb)

In [3]:

P1a: Read in the files and display interferogram

def multilook16x4(image,width, nlines): # Function to take 16 x 4 looks
There are many ways to do this: you can convolve with a rectangle and downsample
You can say for, e.g. two looks, img_ml_2 = (img[0::2] + img[1::2])/2
This method reshapes the image so that all the pixels within a multilook window
are elements in a 3rd dimension, and then finds the mean across that dimension.
img_temp = np.sum(np.reshape(image, (width//4,4, nlines)), axis=1)
ml_img = np.sum(np.reshape(img_temp.T, (nlines//16,16, width//4)), axis=1)
ml_img = ml_img.T /4/16
return ml_img

In [4]:

In [5]:

filepath = "/Users/elizabethwig/Library/CloudStorage/OneDrive-Stanford/Stanford_NonResearch/JPL-NISAR Radar Course/Day 09 Interferometry/HW
slc1path = filepath+"/slc1.dat"
slc2path = filepath+"/slc2.dat"

nr = 6144 # Number of range bins
naz = 12000 # Number of azimuth bins

file = open(slc1path,"rb")
slc1cpx = np.fromfile(slc1path,dtype=np.float32) # Read in file as float32
slc1vec = slc1cpx[0::2] + 1j * slc1cpx[1::2] # Convert to complex numbers
slc1 = np.reshape(slc1vec,(naz,nr)) # Reshape to proper size
slc2cpx = np.fromfile(slc2path,dtype=np.float32) # Read in file as float32
slc2vec = slc2cpx[0::2] + 1j * slc2cpx[1::2] # Convert to complex numbers
slc2 = np.reshape(slc2vec,(naz,nr)) # Reshape to proper size

plt.imshow(np.abs(slc1)) # Display single-look complex image
plt.clim(0,300) # Color limits so image shows up clearly

igram = (slc1 * np.conj(slc2)).T # Cross multiply the single-look complex to get interferogram
igram_ml = multilook16x4(igram,nr,naz) # Multilook interferogram

In [13]:

P2: Load DEM and Baseline files

dismph(igram_ml, nr//4, naz//16) # Use Howard's code to display multilooked interferogram

In [7]:

In [8]:

P3: Calculate Difference in Path Length from Topography

Use geometry from the

following image:

Out[7]: <matplotlib.colorbar.Colorbar at 0x7fe082352b50>

demfile = filepath+"/slc.dem"
dem = np.fromfile(demfile,dtype=np.float32) # Read DEM. Elevation data is not complex
dem = np.reshape(dem,(naz,nr)).T # Reshape DEM to be size of image

dem_ml = multilook16x4(dem,nr,naz) # Multilook DEM

plt.imshow(dem_ml)
plt.colorbar()

baselinefile = filepath+"/slc.baseline"
baselines = np.loadtxt(baselinefile) # Load baseline file
By = baselines[:,1] # Find baseline y component
Bz = baselines[:,2] # Find baseline z component

In [9]:

In [10]:

Define radar parameters

r_e = 6343837.1345648393 # radius of earth (m)
h = 700000 # altitude of the satellite (m)
r0 = 741489 # range to first pixel (m)
fs = 32e6 # range sampling frequency (Hz)
lam = 0.236057 # wavelength of system (m)
c = 2.99792458e8 # speed of light (m/s)
Delta_r_bin_slant = c/(2*fs) # Slant range bin spacing

First, find ranges rho
rho = np.arange(r0, r0+(nr-1)*Delta_r_bin_slant, Delta_r_bin_slant)
rho = np.expand_dims(rho, axis=-1) # Expand dimensions of rho so it can broadcast with 2D DEM
Then, project the baseline vector in the direction of the look angle
theta0 = np.arccos(((r_e+h)**2 + rho**2 - r_e**2)/(2*(r_e+h)*rho));
thetad = np.arccos(((r_e+h)**2 + rho**2 - (r_e+dem)**2)/(2*(r_e+h)*rho));
Use trigonometry to find unit vectors along rho
u0_y = np.sin(theta0);
u0_z = np.cos(theta0);
ud_y = np.sin(thetad);
ud_z = np.cos(thetad);
Project baselines onto unit vectors at each pixel
proj_B0 = (By*u0_y + Bz*u0_z);
proj_Bd = (By*ud_y + Bz*ud_z);

In [11]: # Calculate topo phase. This is accurate, though not constrained between 0 and 2pi
So you can think of it as "not wrapped"
topo_phase = (proj_Bd-proj_B0)*-4*np.pi/lam;
Find the signal used to correct for the topo phase
topo_signal = np.exp(-1j*topo_phase)
Multilook the topo signal
ml_topo_signal = multilook16x4(topo_signal,nr,naz);

Display the phase due to the topography
dismph(ml_topo_signal,nr//4,naz//16)

In [12]: # Calculate topo-corrected interferogram -- phase only from deformation
deformation_int = igram_ml * np.conj(ml_topo_signal);

Display phase due to deformation
dismph(deformation_int, nr//4, naz//16)

