ALOS_SAR_Processor-with-1d-homework - Jupyter Notebook http://localhost:8888/notebooks/Courses/2023RadarShortCourse/homework/hwo/ ...

In [59]: # HW6 1-d solution
read in the data:
E_cr_sim_1d_cpx=np.fromfile("alossim_1d.dat",dtype=np.complex64)

in this problem, some point targets were arranged along a single range rho_f, so parallel
where rho_f can be calculated from the provided height h_sc and look angle, theta_f
#rho_f = h / np.cos(theta_f*np.pi/180.)

the extent of the synthetic aperture at this range is given through the beamwidth theta_L
where L is the antenna length in azimuth

theta_L_a = 0.88 x Lambda/L # 0.88 gives a better approximation to the 3-dB beamwidth

from this we can calculate the extent of the synthetic aperture the extent of the beam on
s_s_ref = - rho_f x theta_L_a / 2. # start of synthetic aperture

s_e_ref = + rho_f x theta_L_a / 2. # end of synthetic aperture

the number of points in an array to hold the reference function will depend on the data s
the spacing Delta_s = v_sc/prf, where both v_sc and prf are given in the problem statemen
n_s_ref = int(np.round((s_e_ref-s_s_ref)* Delta_s)) # number of points in synthetic apertu
now can define a reference function extent for the synthetic aperture

s_sa_ref = np.linspace(s_s_ref,s_e_ref,n_s_ref)

with this we can calculate the range history over this extent

rho_sa = np.sqrt(Rho_cr[Ind_cr[0]]*x2+(s_sa_ref)*x2)

and the phase history over this extent

phi_sa = 4.*np.pi*rho_sa/Lambda

and the matched filter history over this extent

ref_sa = np.exp(1lj*phi_sa)

note that since the flight path is parallel to the reflectors in this problem, we can cal
and use it for all iterations of back projection. However, if the track deviated from a
parallel to the ground path of interest, we would need to recalculate this matched filter
in the loop below. As such in this problem under these simple assumptions, the backproje
is no different from the correlation done in conventional range doppler processing

HoH B R R

E_bp = np.zeros(s_sim.shape,dtype=np.complex128)
loop over the output points, which for convenience here are the same as the input simulat
You could specify a denser output grid to better resolve the point targets
for i,s in enumerate(s_sim):
compute the limits of the data needed for this output point to apply the matched filt
Since the problem has zero squint, the data needed is +/- half a beamwidth. Clip it i
the end of the array
s_s_im = np.clip(s - rho_f * theta_L_a / 2.,s_sim[0],s_sim[-1])
s_e_im = np.clip(s + rho_f x theta_L_a / 2.,s_sim[0],s_sim[-1])
compute the number of samples. This should be the same as the matched filter length
n_s_im = int(np.round((s_e_im-s_s_im)* Delta_s))
compute where in the array the data will be in pixels rather than in meters.
stind = int((s_s_im-s_sim[0])*Delta_s)
enind = stind+n_s_im
#d o the matched filter operation (cross-multiply and sum) for each point only if the s
does not run off the end of the array
if (len(E_cr_sim_1d[stind:enind]) == len(ref_sa)):
E_bp[i]l = np.sum(E_cr_sim_1d_cpx[stind:enind]*ref_sa)

In [62]: # here is a plot of the entire compressed "imageplt.plot(s_sim,E_bp)
plt.show()

17 of 45 10/31/23, 4:09 PM

ALOS_SAR_Processor-with-1d-homework - Jupyter Notebook http://localhost:8888/notebooks/Courses/2023RadarShortCourse/homework/hwo/ ...

In [61]: # there are three targets. the small blip at the left is an ambiguity
(aliased energy in the sidelobe of the antenna pattern). The target to the right are act
closely spaced. This can be seen by expanding the plot around that target. It looks wia
1if you were to oversample the output, you'd see two distinct peaks. Try it!
plt.plot(s_sim,E_bp)
plt.plot(s_sim[9100:9200],E_bp[9100:9200])
plt.show()

0.00015

0.00010

0.00005 +

0.00000 -

10400 10500 10600 10700 10800

Now let's look at these echoes in the presence of the thermal noise signature, with a field with noise power kT B,..

18 of 45 10/31/23, 4:09 PM

