In [59]: \# HW6 1-d solution
\# read in the data:
E_cr_sim_1d_cpx=np.fromfile("alossim_1d.dat",dtype=np.complex64)
\# in this problem, some point targets were arranged along a single range rho_f, so parallel \# where rho_f can be calculated from the provided height h_sc and look angle, theta_f \#rho_f = h / np.cos(theta_f*np.pi/180.)
\# the extent of the synthetic aperture at this range is given through the beamwidth theta_L \# where $L$ is the antenna length in azimuth
theta_L_a $=0.88 *$ Lambda/L \# 0.88 gives a better approximation to the $3-\mathrm{dB}$ beamwidth
\# from this we can calculate the extent of the synthetic aperture the extent of the beam on s_s_ref = - rho_f * theta_L_a / 2. \# start of synthetic aperture
s_e_ref $=+$ rho_f $*$ theta_L_a / 2. \# end of synthetic aperture
\# the number of points in an array to hold the reference function will depend on the data s \# the spacing Delta_s = v_sc/prf, where both v_sc and prf are given in the problem statemen n_s_ref = int(np.round((s_e_ref-s_s_ref)* Delta_s)) \# number of points in synthetic apertu \# now can define a reference function extent for the synthetic aperture
s_sa_ref = np. linspace(s_s_ref,s_e_ref,n_s_ref)
\# with this we can calculate the range history over this extent
rho_sa = np.sqrt(Rho_cr[Ind_cr[0]]**2+(s_sa_ref)**2)
\# and the phase history over this extent
phi_sa = 4.*np.pi*rho_sa/Lambda
\# and the matched filter history over this extent
ref_sa $=$ np. $\exp \left(1 j * p h i \_s a\right)$
\# note that since the flight path is parallel to the reflectors in this problem, we can cal \# and use it for all iterations of back projection. However, if the track deviated from a \# parallel to the ground path of interest, we would need to recalculate this matched filter \# in the loop below. As such in this problem under these simple assumptions, the backproje \# is no different from the correlation done in conventional range doppler processing

E_bp = np.zeros(s_sim. shape,dtype=np.complex128)
\# loop over the output points, which for convenience here are the same as the input simulat \# You could specify a denser output grid to better resolve the point targets
for i,s in enumerate(s_sim):
\# compute the limits of the data needed for this output point to apply the matched filt
\# Since the problem has zero squint, the data needed is +/- half a beamwidth. Clip it i \# the end of the array
s_s_im = np.clip(s - rho_f * theta_L_a / 2., s_sim[0],s_sim[-1])
s_e_im = np.clip(s + rho_f $*$ theta_L_a / 2., s_sim[0],s_sim[-1])
\# compute the number of samples. This should be the same as the matched filter length n_s_im = int(np.round((s_e_im-s_s_im)* Delta_s))
\# compute where in the array the data will be in pixels rather than in meters.
stind $=$ int((s_s_im-s_sim[0])*Delta_s)
enind = stind+n_s_im
\#d o the matched filter operation (cross-multiply and sum) for each point only if the s \# does not run off the end of the array
if (len(E_cr_sim_1d[stind:enind]) == len(ref_sa)):
E_bp[i] = np.sum(E_cr_sim_1d_cpx[stind:enind]*ref_sa)

In [62]: \# here is a plot of the entire compressed "imageplt.plot(s_sim,E_bp) plt.show()

In [61]: \# there are three targets. the small blip at the left is an ambiguity \# (aliased energy in the sidelobe of the antenna pattern). The target to the right are act \# closely spaced. This can be seen by expanding the plot around that target. It looks wid \# if you were to oversample the output, you'd see two distinct peaks. Try it! plt.plot(s_sim,E_bp)
plt.plot(s_sim[9100:9200],E_bp[9100:9200])
plt.show()


Now let's look at these echoes in the presence of the thermal noise signature, with a field with noise power $k T B_{r}$.

