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Many radar standards/products in common use

 Need to define units
* Need to be able to calibrate

* Radar backscatter usually described:
e Radar cross section (o)
» Radar cross section per range-Doppler area (BO)
 Specific (or normalized) radar cross section (GO)
* “Corrected” normalized radar cross section (yo)



Radar equation

* Derives received signal power from instrument and viewing geometry
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e Radar cross section o is least familiar of these terms as others are
easily measurable quantities



Rearrange radar equation

* |solate radar cross section for definition — rearrange terms first




Radar cross section defined — |IEEE standard

* Formally ratio of reflected to incident power density, units
mN2

* Rearranged terms in radar equation leads to
k
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* The last factor accounts for range spreading (dispersion)
so that cross section is independent of distance
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Radar calibration by using known corner
reflector

* Example: RCS (radar cross section) of triangular trihedral corner

reflector — a is length of side from corner to vertex
a
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Note that this calibrates ¢ only



RCS of surfaces — apropos imaging systems

* Traditional approach is to define a normalized radar cross section c°

* gV is cross section ¢ divided by ground area — “specific cross section”

* Then radar equation becomes
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* Asurface 1S ground area illuminated, gives RCS units m?

* Then unitless o? is independent of resolution and reflects a property
of the surface

* Note: some systems use local incidence angle and some use ellipsoid
angle — ellipsoid is more common in literature, although “wrong”



Examples of o® behavior

* Generic backscatter model: specular scattering near normal and
diffuse scattering for 6 > ~15°

Behaves like cos" for large angles

—>\ 10 % o dB




Measured o behavior

e Same general behavior for many surfaces — on Earth and elsewhere
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oV theoretical and empirical relations - cos”

* Rough surface — Bragg scatter
e g%(0) = 16mcos* 8 |g(0)|* W (kg)

* g depends on polarization, W is surface spectrum at Bragg freq.
* Diffuse (volume) scatter

e 0%(0) = Acos™(8)

e |sotropic surface n=1, Lambertian surface (e.g. moon) n=2



Normalizing geometrical effects

» o0 “corrects” for resolution area dependence on incidence angle
* Average incidence angle (ellipsoid correction)
* Local incidence angle (terrain correction)

* NB: local terrain affects scattering area — hence “terrain correction”

 But there is no actual standard (e.g., IEEE) definition of y° or c°
» Rather, most papers default to definitions as used by Small (2011)

* And this y’includes an extra cosine to compensate for generic falloff as it
better flattens the brightnesses

* Yis a better quantity for classification or machine learning
approaches — see below



Note on B%and yY

* If normalized cross section is done in range-Doppler plane then
instead of 6 we have something proportional to cross section itself

* Many authors call this quantity °

 Again, no standard definition but would be reducible to either ° or y°
if average or local incidence is available as a layer in product

* EXCEPT - yY has the extra cosine in the empirically-derived definition



So why use which of y° or "

 vOdecreases sensitivity of cross section to incidence angle, so that
variations seen are more dependent on other factors

* This is very helpful for supervised classification
* Applicable to empirical (allometric) models
* Machine learning classifiers benefit from removing one degree of freedom

* 50 is closer to physical scattering models so better explains
backscatter mechanisms
* Needed for model development
 Matches EM literature



Scattering area and inc. angle: RSLC vs GSLC
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Ease of implementing in geocoded products

e Given o as calibrated from corner reflectors:
* 3°=c/(AreAaz) (pixel size in range/Doppler domain)
* B%=c/(AxeAy) (pixel size in geocoded ground coords)

e Areas can be tricky to match in range-Doppler space when data finally
used for real applications

* In geocoded domain geometry is clear:
* 6%=f%in6,, (c®withincidence angle from local normal)
* ¥9=[%sin 0,,. /cos O,,. (scattering behavior compensation)



Pros/cons of various options

* Both range-Doppler/Geocoded complex images (RSLCs/GSLCs) can be
calibrated so that squaring the amplitudes gives units of one of the three
guantities — seems needed at minimum

e Geocoded covariance products could be in any of the three as well

* o' is the traditional and accepted quantity and best suited for comparing
results to scattering models

* yOgives a flatter image, making time series easier to interpret if multiple
incidence angles are used, and emphasizes scattering mechanism changes

* To decide between c° or y° : reduce to scattering-driven measurements or
one that adds in an extra cosine for classification/empirical parameters



Example images — these are from Sentinel-1

* Derived from either LO or L1 data products — both implemented in our
codes

e Each panel shows three images: upper right is ¢ (cross section),
lower left is ¥ (normalized cross section), lower right is y° (extra
cosine applied)

* Examples are from LA, Vancouver BC, New England, and Colorado

* Individual swaths still lack an overall scale factor in LO products, these
variations don’t appear in calibrated L1 products. See image example
at end for this case over LA.
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Summary: Questions for CEOS product
generation

* Which of these quantities do we want?
* Do products allow for converting from one to another?

* Do product specs clearly identify which quantities are presented in
project products?



Lessons for SAR calibration/validation

* Create RSLCs/GSLCs such that squaring the amplitudes gives units of
one of the three quantities — be explicit about units/definitions

* Include local terrain slope or area so that the three quantities 3°, o°
or y° may be readily computed regardless of which is presented
directly

* Products in geocoded coordinates make the conversions simplest
e Can include DEM itself but that requires user to derive slopes



Reference: some relations between c?, f°and
yY from literature

* Given G as calibrated from corner reflectors:

* B%=c/(AreAaz) (pixel size in range/Doppler domain)

* 9= o/(AxeAy) (pixel size in geocoded ground coords)
Below apropos working in geocoded image coordinates

e %= [%sin O (incidence angle from ellipsoid normal, usual def., ground
coords)

e g%ory=BYsin 6,,. (c® with incidence angle from local normal, or D. Small c9,)
* v9=3%sin O,/cos 0, (another possibility for y°)
e v0=B%sin 0,,. /cos 0,,.  (thisis a more consistent definition)



