GP265/EE355 Handout \#9
 Solutions for Homework Set No 1

1. a) wavelength: 24 cm

Signal to Noise Ratio dB Table		
	Value	dB
Wavelength	0.24	
Transmit power	2500	34.0
Cable losses	0.7943	-1.0
4π	12.5664	11.0
Antenna efficiency	0.5	-3.0
Antenna size	0.5	-3.0
$1 / /^{2}$	17.3611	12.4
$1 / 4 \pi$	0.0796	-11.0
$1 / \mathrm{R}^{2}$	$4.44 \mathrm{E}-09$	-83.5
Object size	50	17.0
Object σ^{0}	0.0316	-15.0
$1 / 4 \pi$	0.0796	-11.0
$1 / \mathrm{R}^{2}$	$4.44 \mathrm{E}-09$	-83.5
Antenna efficiency	0.5	-3.0
Antenna size	0.5	-3.0
Cable losses	0.7943	-1.0
Signal power		-143.7
Boltzmann's constant	$1.38 \mathrm{E}-23$	-228.6
Noise temperature	900	29.5
System bandwidth	$1.00 \mathrm{E}+06$	60.0
Noise power		-139.1
Signal to noise ratio	0.34	-4.7

b) wavelength: 3 cm

Signal to Noise Ratio $d B$ Table		
	Value	dB
Wavelength	0.03	
Transmit power	2500	34.0
Cable losses	0.7943	-1.0
4π	12.5664	11.0
Antenna efficiency	0.5	-3.0
Antenna size	0.5	-3.0
$1 / \lambda^{2}$	1111.1111	30.5
$1 / 4 \pi$	0.0796	-11.0
$1 / \mathrm{R}^{2}$	$4.44 \mathrm{E}-09$	-83.5
Object size	50	17.0
Object 0^{0}	0.0316	-15.0
$1 / 4 \pi$	0.0796	-11.0
$1 / \mathrm{R}^{2}$	$4.44 \mathrm{E}-09$	-83.5
Antenna efficiency	0.5	-3.0
Antenna size	0.5	-3.0
Cable losses	0.7943	-1.0
Signal power		-125.7
Boltzmann's constant	$1.38 \mathrm{E}-23$	-228.6
Noise temperature	990	29.5
System bandwidth	$1.00 \mathrm{E}+06$	60.0
Noise power		-139.1
Signal to noise ratio	21.92	13.4

For a fixed size antenna, gain goes as $\frac{1}{\lambda^{2}}$, hence the increase in SNR.

2. a) The antenna must illuminate from $34.5^{\circ}-52.7^{\circ}$, a beamwidth of 18.2°. Calculate antenna width:

$$
18.2^{\circ}=0.32 \mathrm{rad}=\frac{\lambda}{D} \rightarrow D=0.75 \mathrm{~m}
$$

Antenna gain $=\frac{4 \pi A}{\lambda^{2}}=\frac{4 \pi \times 0.75 \times 2}{0.24^{2}}=327.25$ or 25.2 dB
Using the value to the center of the swath as the distance, the range is $11,312 \mathrm{~m}$.
How about the scattering area? The along-track dimension is

$$
\frac{r \lambda}{l}=\frac{11312 \times 0.24}{2}=1357 \mathrm{~m}
$$

In the across-track dimension, we use the projected area of the pulse. The pulse length is $1 \mu \mathrm{~s}$, so the transmit pulse length in meters is

$$
T=\frac{c \tau}{2}=\frac{3 \times 10^{8} \times 1 \times 10^{-6}}{2}=150 \mathrm{~m}
$$

Based on our incidence angle of 45°, projected on the ground we have a length of

$$
\text { length }=\frac{\text { pulse length }(\mathrm{m})}{\sin \mathrm{i}}=\frac{150}{\sin 45^{\circ}}=212 \mathrm{~m}
$$

So the total scattering area is $1357 \times 212=287,684 \mathrm{~m}^{2}$.
My dB table looks like this (yours may differ): Note I easily achieve a very high SNR.

Signal to Noise Ratio dB Table		
	Value	dB
Wavelength	0.24	
Transmit power	1000	30.0
Cable losses	0.7943	-1.0
4π	12.5664	11.0
Antenna efficiency	0.5	-3.0
Antenna length	2	3.0
Antenna width	0.7680	-1.1
$1 / /^{2}$	17.3611	12.4
$1 / 4 \pi$	0.0796	-11.0
$1 / R^{2}$	$7.81 \mathrm{E}-09$	-81.1
c (speed of light)	$3.00 \mathrm{E}+08$	84.8
pulse length	1.00E-06	-60.0
$1 /(2 \sin \theta)$	$7.07 \mathrm{E}-01$	-1.5
RM/Antenna length	$1.36 \mathrm{E}+03$	31.3
σ^{0}	0.0316	-15.0
Antenna efficiency	0.5	-3.0
Antenna area	1.5360	1.9
Cable losses	0.7943	-1.0
$1 / 4 \pi$	0.0796	-11.0
$1 / R^{2}$	$7.81 \mathrm{E}-09$	-81.1
Signal power		-95.4
Boltzmann's constant	1.38E-23	-228.6
Noise temperature	1000	30.0
System bandwidth	$1.00 \mathrm{E}+06$	60.0
Noise power		-138.6
Signal to noise ratio	20710.15	43.2

b) If we change the wavelength to 6 cm , a factor of four, we must decrease the antenna width by the same factor to keep the beamwidth the same. Hence the antenna is now $2 \times 0.19 \mathrm{~m}$. Note that this changes the antenna gain and the scattering area:

Signal to Noise Ratio dB Table

	Value	dB
Wavelength	0.06	
Transmit power	1000	30.0
Cable losses	0.7943	-1.0
4π	12.5664	11.0
Antenna efficiency	0.5	-3.0
Antenna length	2	3.0
Antenna width	0.1920	-7.2
$1 / \lambda^{2}$	277.7778	24.4
$1 / 4 \pi$	0.0796	-11.0
$1 / R^{2}$	$7.81 \mathrm{E}-09$	-81.1
c (speed of light)	$3.00 \mathrm{E}+08$	84.8
pulse length	$1.00 \mathrm{E}-06$	-60.0
$1 /(2$ sin 8)	$7.07 \mathrm{E}-01$	-1.5
RM/Antenna length	$3.39 \mathrm{E}+02$	25.3
0	0.0316	-15.0
Antenna efficiency	0.5	-3.0
Antenna area	0.3840	-4.2
Cable losses	0.7943	-1.0
$1 / 4 \pi$	0.0796	-11.0
1/R R^{2}	$7.81 \mathrm{E}-09$	-81.1
Signal power		
		-101.5
Boltzmann's constant	$1.38 \mathrm{E}-23$	-228.6
Noise temperature	1000	30.0
System bandwidth	$1.00 \mathrm{E}+06$	60.0
Noise power		
		-138.6
Signal to noise ratio	5177.54	37.1

Signal to Noise Ratio dB Table		
	Value	dB
Wavelength	0.02	
Transmit power	1000	30.0
Cable losses	0.7943	-1.0
4π	12.5664	11.0
Antenna efficiency	0.5	-3.0
Antenna length	2	3.0
Antenna width	0.0640	-11.9
$1 / /^{2}$	2500.0000	34.0
$1 / 4 \pi$	0.0796	-11.0
$1 / R^{2}$	$7.81 \mathrm{E}-09$	-81.1
c (speed of light)	$3.00 \mathrm{E}+08$	84.8
pulse length	1.00E-06	-60.0
1/(2sin 8)	7.07E-01	-1.5
RN/Antenna length	1.13E+02	20.5
σ^{0}	0.0316	-15.0
Antenna efficiency	0.5	-3.0
Antenna area	0.1280	-8.9
Cable losses	0.7943	-1.0
$1 / 4 \pi$	0.0796	-11.0
$1 / R^{2}$	$7.81 \mathrm{E}-09$	-81.1
Signal power		-106.2
Boltzmann's constant	1.38E-23	-228.6
Noise temperature	1000	30.0
System bandwidth	1.00E+06	60.0
Noise power		-138.6
Signal to noise ratio	1725.85	32.4

c) For a fixed swath, decreased antenna area lowers performance with increasing frequency. In question (1) performance increased because the target filled greater percentage of the physical antenna beam.

