
Homework 1 Solutions

Problem 1. Consider a bistatic configuration where the transmitter and receiver are sepa-

rated by a distance of 5 km. The radar is operating in the CW interference mode at a wavelength

of 5 m. A ship reflects the radar waves as with the 1922 radar of Taylor and Young of NRL.

Suppose the ship travels along a perpendicular bisector of the line connecting the transmitter

and receiver at a constant velocity of 5 m/s. What will the envelope of the received waveform

look like? What will be the period of the interference envelope as a function of ship distance

from the line between radar transmitter and receiver? You may take the radar transmitter and

receiver and the ship to be in the same plane. Doppler e↵ects can be ignored for the purposes

of this problem (think about whether this really matters). Assume that the reflected signal

arrives at the receiver with half the magnitude of the direct signal.

Solution. Let a = 5 km denote the separation between the transmitter and receiver and

let d denote the distance of the ship from the line between the transmitter and receiver as in

Fig. 1. The direct signal arriving at the receiver is a time-delayed version of the transmitted
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Figure 1: Geometry for problem 1.

sinusoid:

sdir(t) = cos(2⇡f0(t� a/c))

where c is the speed of light and we assume that the direct signal has unit amplitude. The

reflected signal is given by

sref(t) =
1
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The sum of these signals sR(t) = sdir(t) + sref(t) is received at the receiver. There are many
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ways to think about detecting the envelope: a diode detector (as in simple AM demodulation),

a mixer and low-pass filter, etc. It is probably easiest to think of the signal in terms of its

rotating phasors, however. Fig. 2 shows that the two signals can be represented as vectors in

the complex plane, with the envelope being the magnitude of their resultant sum. The envelope

will be therefore be given by
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Figure 2: Phasor diagram for direct and reflected signals for problem 1.
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This expression can also be approximated to some extent by 1 + 0.5 cos(��). The quantity

�� is the relative phase di↵erence between the two signals, which varies as a function of

distance d. Physically, the direct and reflected signals are sinusoids of the “same” frequency

but with di↵erent phases, so sometimes the signals interfere constructively while at other times

they interfere destructively. Normalized to the magnitude of the direct signal, the envelope

will therefore vary between 1.5 and 0.5. By examining sdir(t) and sref(t), we find the phase

di↵erence do be

�� = 2⇡f0
a� 2

p
d2 + (a/2)2

c

The magnitude of the envelope is plotted as a function of distance in Fig. 3.

Take the period T to be the time between peaks in the envelope. The envelope is not exactly

sinusoidal, but its peaks do correspond to the peaks of a sinusoid of the form cos(��). Using

the chain rule and knowing that the time derivative of d is v, the period of a the envelope is

given by

T =
1

finst
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Figure 3: Envelope of received signal for problem 1.

Problem 2. Derive an expression for Doppler shift when there is nonzero target accel-

eration (R̈ 6= 0). (Hint: frequency is the time derivative of phase; consider the phase of the

received echo as a function of range.) Neglect relativistic e↵ects.

Solution. Let the transmitted signal and the range at time t be given by

vt(t) = cos(2⇡f0t+ �0)

R(t) = R0 + vt+ at2/2

where v and a are the target velocity and acceleration. The received signal is a time-delayed

version of the transmitted signal:

vr(t) = cos(2⇡f0(t� ⌧) + �0)

with the delay ⌧ given by

⌧ =
2R(t)

c

If we assume that the target velocity and acceleration are much, much smaller than the speed of

light, the change in range during the signal flight time is insignificant. Substituting, we obtain

vr(t) = cos

✓
2⇡f0

✓
t� 2

c
(R0 + vt+ at2/2)

◆◆

As frequency is the time derivative of phase, we di↵erentiate the argument of the cosine above
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