Fundamentals and Geophysical Application of Imaging Radar Systems

Syllabus

Howard Zebker and Paul Rosen

From instruments

to images

General Information

Location : Salvatori Seminar Room South Mudd Building, Third Floor Caltech Campus Northeast corner of California and Wilson

Dates: Oct. 23-Nov. 3, 2023

Times: 8:30-11:30 Lectures 1:00- Homework/Computer Lab

Intended audience:

This class is aimed at advanced students and radar professionals interested in the physical principles and signal processing and analysis needed to understand and work with radar remote sensing data.

Course goal:

The material presented here enables attendees to derive most properties of radar echoes from first physical principles, and to be able to design and implement processing

code that generates high-resolution images from the raw measurements. In addition, you will be able to use multiple channel systems to produce higher order data products such as interferometric and polarimetric analyses. Finally, you will be able to apply these products to a diverse set of geophysical applications.

Course description:

Radar has evolved from a largely military detection system into a sophisticated three dimensional imaging tool with hundreds of applications ranging from commercial aviation to fundamental research in the earth and planetary sciences. The ability to measure and map surface topography and crustal change at unprecedented levels over large areas is fundamentally altering the way in which we can measure and model the processes, natural and man-made, that effect our environment. The interaction of EM waves with different surface types provides a basis for analyzing echoes to discern, for example, the structure of vegetation canopies or surface roughness. In this course we will investigate how radar images are formed and manipulated, as well as applications of the systems. We will be presenting radar as a signal processing problem, rather than the traditional approach as an instrumentation problem, acknowledging the importance of digital computer algorithms in modern radar systems. The first half of the course will be largely devoted to radar image formation, and topics will include system design, range and azimuth processing algorithms, and processor design. In the second half of the course we examine scattering from natural surfaces, polarimetric radars-- which are particularly suited to the study of vegetation cover--, plus the increasingly important field of radar interferometry. Interferometric radar techniques, which have formed a large part of radar-related research over the past 30 years, provide a means to characterize very small changes or motions on the Earth over large areas.

The course will be presented in a lecture/seminar style. Mornings will consistent largely of interactive lectures, while the afternoons will entail a computer exercise to give experience with implementation of the material presented in class. The afternoons will be augmented with guest lectures from senior radar scientists and engineers in order to present diverse ways to look at the problems.

Our approach will be to have students create their own codes to solve each day's problem, building on the previous days' exercises to create a full data flow. Lecture notes will be available online, and special handouts will also be distributed from time to time. Cooperation on the exercises is encouraged, with TA support to help with debugging problems quickly. We can grade you if you like but we want everyone to earn an A+ grade(!)

Day	Торіс	Lectures	Handouts	Homework
1	Basic Concepts and	What is an imaging	<u>Handout 0</u>	Homework 1
	Notation	radar ?		
			<u>Handout 1</u>	
		System design	II. Jack 2	
		principles	<u>Hanaout 2</u>	
			Handout 3	
		Radar equation	<u>114/14/04/ 5</u>	
			<u>Handout 5</u>	
			<u>Handout 6</u>	
2	Range modulation	Radar as a signal	<u>Handout 7</u>	<u>Homework 2</u>
	processing	processing problem	$H_{\rm ev} = 1.0$	llow datall data flo
		D	<u>Hanaout 10</u>	ersaala aala jile
		Range	Handout 11	
		matched filters	1100000 11	
		materied meets	<u>Handout 12</u>	
		Pulse		
		compression		
		System impulse		
		response		
		FFT		
		implementations		
3	Doppler viewpoint	Image formation	Handout 14	Homework 3
		Real aperture	Handout 14a	"ersdata hw3" data
		and unfocused	1100000 1 700	file
		processors		
		1		
		Range-Doppler		
		system design		
4	SAR Processing	Synthetic aperture	Handout 15	Homework 4
		technique		
			<u>Handout 17</u>	"ersdata.hw3" data file
		System impulse	Handout 19	<u>(sume as nw 5)</u>
		response		
		Azimuth	Handout 20	
		correlator design		

5	Range migration	Focusing and	Handout 22	Homework 5
	processing	autofocus		
		algorithms	Handout 25	<u>"simlband.dat" data file</u>
		Donnlar tracking	Handout 27	
		and filtering		
		Multilook		
		processing		
6	Back projection	Coherent summation	Handout 45	Homework 6 1-d
	methods	viewpoint		
			<u>Handout 46</u>	<u>"alossim_1d.dat" data</u>
		Motion compensation	Handout 10	<u>file</u>
		Geocoding	<u>11unu0u1 49</u>	
		8		
				<u>Homework 6 Advanced</u>
				<u>"alosraw.dat" data file</u>
				"alos.position" data file
				<u>"alos.dem" data file</u>
				"alos dem rsc" data file
				"alos.xyz" data file
7	Radar/surface	Scattering mechanisms	<u>Handout 28</u>	<u>Homework 7</u>
	Interactions	and models	Handout 31	"hw7nroh1a trt" table
		Kirchhoff facet models		
			<u>Handout 50</u>	"hw7prob1b.txt" table
		Bragg scattering		
		TT 1 *		"hw7prob1c.txt" table
0	Dolonimotury	Volume scattering	Ilandout 51	Uomenont 9
o	rolarimetry	Polarized radar waves	<u>Hanaoul 51</u>	<u>Homework o</u>
		Polarizations signatures		
		and diffuse scattering		
		Scattering from		
		vegetation		
	1		1	

		Radiometric calibration		
		Geometric distortion		
9	Interferometry	Interferometric radar	Handout 32	Homework 9
		Image registration	<u>Handout 33</u>	<u>"slc1.dat" data file</u>
		Baseline determination	<u>Handout 34</u>	<u>"slc2.dat" data file</u>
		Surface topography	<u>Handout 37</u>	<u>"slc.dem" data file</u>
		Surface velocities / ocean	<u>Handout 38</u>	<u>"slc.baseline" data file</u>
			<u>Handout 39</u>	
		Crustal deformation	<u>Handout 40</u>	
			<u>Handout 42</u>	
			<u>Handout 43</u>	
			<u>Handout 44</u>	
			<u>Handout 52</u>	
10	Application examples	Ecosystems	<u>Handout 47</u>	
		Cryosphere	<u>Handout 48</u>	
		Solid Earth		
		NISAR applications		
		community		

REFERENCES

Several books which may serve as useful references are listed below.

Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New York, 2nd edition, 1986.

Carrara, W.G., R.S. Goodman, and R.M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Norwood, MA, 1995.

Cook, C.E., and M. Bernfeld, Radar Signals, Academic Press, New York, 1967.

Curlander, J.C. and R.N. McDonough, Synthetic Aperture Radar, Wiley Interscience, New York, 1991.

Elachi, C., Introduction to the physics and techniques of remote sensing, Wiley, New York, 1987.

Elachi, C., Spaceborne Radar Remote Sensing: Applications and Techniques, IEEE press, New York, 1988.

Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, New York, 1968.

Kraus, J.D. Radio Astronomy, McGraw-Hill, New York, 1966. (Later editions good also)

Peebles, P.Z, Radar Principles, Wiley Interscience, New York, 1998.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, the Art of Scientific Computing, Cambridge University Press, New York, 1988. (Any of the Numerical Recipes series will have useful algorithm information)

Sabins, F., Remote Sensing, 3rd ed., Freeman, New York, 1996. Soumekh, M., Fourier Array Imaging, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

Skolnik, M.I., Radar Handbook, McGraw-Hill, New York, 1970.