Beamforming in space — beam viewpoint

Incident wave at angle 0
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« Measuring power at each angle images sources in space



Beamforming in space — phase viewpoint

- Incident wavefront at angle 6
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» Measuring phase at each angle finds sources in space



Beamforming in time

Moving object at velocity v
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» Measuring phase at each time finds line of sight velocity



Time-dependent velocities

Time dependent velocity v(t)

Virtual ‘wavefront’ over time
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» Measuring phase at each time finds line of sight velocity



The fundamental INSAR measurement

* Observe the same region twice, measure
mutual coherence of each resolution element

« Phase difference of radar echoes yields
change in path length

INSAR phase:

Deformation or moving object



Time series INSAR method

Acquire many scenes from a ground area

Precisely coregister the complex image data, form all
pairs

Compute phase differences to find change in range
for each pixel

Extract time-variable velocity for each time interval

Least squares analysis of overdetermined system



Estimate the velocity series

« Create a set of interferograms for various time
Intervals

« Suppose we have a series of temporal observations:
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Least-squares velocity estimation

« We derive a series of velocities v at each image point
from a set of interferogram measurements Ag;

« Define a matrix A of time separations describing the
full set of interferograms, to obtain a matrix equation

Av=A{
whose solution is the desired time series

* Repeating this for every pixel in an image, and
integrating the velocity series, results in an image of
pixel position vs. time



Time series INSAR example:
Kings County groundwater basin




CA Groundwater Basin

Kings County,




Kings County time series
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Why is this challenging?

« Coherence decreases with both spatial and
temporal satellite separation

* Not all interferograms have sufficient
coherence for reliable phase measurements
at all pixels

* Need to select either 1) high coherence
interferograms or 2) high coherence pixels



Spatial coherence

« Spatial coherence, or correlation, for a
distributed resel decreases as the Fourier
transform of the impulse response

* For a sinc”2 impulse response, correlation
falls off linearly from unity at no separation to
zero at a “critical baseline”
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Temporal coherence

* Correlation falls off with time separation as
ground surface changes with time

» Typical falloff is linear or exponential with
time depending on the surface
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* Decrease is faster for shorter wavelengths



X-band interferogram
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Typical interferogram of
Hawaii, showing loss of
coherence in heavily
vegetated area




High coherence interferograms:
Small Baseline Analysis (SBAS) condition

 Plot time and baseline relation

« Choose pairs that minimize temporal and spatial
decorrelation by choosing short distances

Distance between satellites

Time between acquisitions



SBAS: Small earthquake displaces
surface 2 cm




SBAS: Small earthquake displaces
surface 2 cm




