
Chapter 17

Radar Interferometers

The next set of radar applications we are going to introduce is interferometric radar. For

the environmental applications we have been emphasizing here, interferometric analyses have

found their most widespread use in imaging radars. And because imaging radars generally

require fine resolution and synthetic aperture processing, the systems we are most interested

are interferometric synthetic aperture radars. Thus you will often see the nomenclature InSAR

as an acronym (ISAR was already in common usage as an abbreviation for inverse synthetic

aperture radar.)

We will see that a geometric interpretation of radar phase is a very useful way to visualize

and model interferometric echoes. While the development of classical interferometers at light or

radio wavelengths precedes InSAR by several or more decades, much of this work was aimed at

making interferometry work using technologies that did not permit ready measurement of signal

phase. In today’s digital world we can sample and record complex signals easily, bypassing the

need for intermediate conversion to power quantities that characterizes classical interferometry.

Nonetheless is is worthwhile to briefly examine classical development for its precursory role in

radar interferometry.

An interferometer is a device that analyzes EM waves coherently at two observation points,

that is, the phase di↵erence of two waves is studied. Combining the signals from both an-

tennas to determine the phase di↵erence forms the interferometer. As it was di�cult to

measure the two signal phases in the pre-digital era, there evolved two main implementa-

tions that exploited amplitude quantities dependent on phase- adding interferometers and

multiplying or correlation interferometers. Both have been used at radar wavelengths, although
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the latter is more common today. Because the adding interferometer was developed first, and

is perhaps conceptually simpler, it is worthwhile to take a look at the basic principles of inter-

ferometry from this viewpoint.

17.1 Adding interferometer

We have seen that we can measure the amplitude and frequency for an arriving EM wave,

which in the case of a radar is an echo reflected from an object of interest. It also important

in many applications to know the direction of arrival as well, such as in mapping the location

of a radioastronomical source or of an incoming nuclear missile. Examine the geometry of a

wave field on a pair on antennas as shown in fig. 17.1. The wave travels a distance � = B · uinc

= B sin↵ longer to reach the second antenna, accumulating additional phase in the amount

2⇡
� �. Note that the projection of B in the incident direction is written using a sin() rather than

cos() because we have defined the angle of arrival ↵ in the o↵-zenith direction rather than with

respect to the horizon. The factor of 2 becomes a factor of 4 if we have two independent radar

systems, one at the location of antenna 1 and one at the location of antenna 2, as the extra

path length is traversed twice. For a cosinusoidal incoming wave, we will find it convenient to

consider the signal from the first antenna as advanced by half of this phase and the signal from

the second antenna as delayed by half of this amount:

s1(t) = a exp[�j(2⇡ft+
2⇡

�

�

2
)] (17.1)

and

s2(t) = a exp[�j(2⇡ft�
2⇡

�

�

2
)] (17.2)

where a is the amplitude of the incoming wave. The adding interferometer obtains its output

signal by summing the two waves coherently,

csum(t) = s1(t) + s2(t)

= a exp[�j(2⇡ft+
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2
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B sin↵

2
) (17.3)
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Figure 17.1: Wavefront on two antennas. A plane wave in the direction of unit
vector uinc impinges on two antennas separated by a baseline B. The extra path
length traveled by the wave from the first antenna encountered � is equal to B ·uinc

= B sin↵, and accumulates extra phase in the amount 2⇡
� �. If each antenna both

transmits and receives, then the path di↵erence is traversed twice, and the phase
shift is 4⇡

� �. An interferometer sensitive to the phase di↵erence can thus determine
the location of the source.

The received signal amplitude is multiplied by a cosine factor that depends on angle of arrival,

so that measuring the power of the signal tells us something about its location. In fact, eq.

17.3 shows that the amplitude of the sum signal is proportional to the component of the source

distribution with a spatial frequency determined by the baseline length and the angle of arrival.

17.2 Monopulse radar

The adding interferometer converts phase information to amplitude. This is especially valuable

for radioastronomical instruments where sensitivity to a single or set of Fourier coe�cients of

the sky distribution is desired. For a radar system, where there may be only a single point

target of interest, however, this observation of signal power depends not only on arrival angle

but also on intrinsic brightness (denoted a above) of the object, which is usually unknown. A

variation of the adding interferometer, denoted monopulse because it can be implemented on

a single radar echo, removes the dependence on knowledge of signal amplitude by considering

the ratio of two quantities, so that the absolute amplitude of the echo cancels out.
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When we formed the adding interferometer signal (eq. 17.3), we computed the sum of the

signals from the two antennas. For monopulse, we also form the di↵erence of the two signals,

as

cdiff (t) = s1(t)� s2(t)

= a exp[�j(2⇡ft+
2⇡

�

�

2
)]� a exp[�j(2⇡ft�

2⇡

�

�

2
)]

= a exp[�j(2⇡ft)]2j sin(
2⇡

�

�

2
)

= a exp[�j(2⇡ft)]2j sin(
2⇡

�

B sin↵

2
) (17.4)

Now we can form the ratio of the magnitude of each of the di↵erence and sum measurements,

and obtain
sin(2⇡�

B sin↵
2

)

cos(2⇡�
B sin↵

2
)
= tan

2⇡

�

B sin↵

2
(17.5)

Thus the amplitude a of the incoming wave cancels out, so that the ratio of the di↵erence and

sum amplitudes depends solely on the angle of arrival. Such a di↵erential measurement permits

a much less ambiguous determination of angle of arrival.

17.3 A simple multiplying interferometer

Accurate measurement of the phase of an incoming wave on two antennas allows us to determine

the angle of arrival. With today’s technology we can measure this phase directly, without

requiring the intermediate step of conversion to magnitude, and derive the angle of arrival

more accurately.

Let’s examine a radar interferometer design for measuring surface topography. We will see

that this is equivalent to measuring the angle of arrival from a point of interest on the surface,

as long as we know the platform altitude and the baseline between the two radar antennas.

Consider a radar geometry similar to the adding interferometer figure but altered so as to put

the antennas on an observing platform looking down at the surface, as in fig. 17.2. Similar to

the adding interferometer, the extra path length to the second antenna is the projection of the

baseline in the radar line of sight:

� = B sin(✓ � ↵) (17.6)
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Figure 17.2: Radar interferometer geometry. Two radar antennas on an airborne or
spaceborne platform illuminate a point on the surface below. The range from the
antenna array center to the point is r, and the range di↵erence from the first to the
second antenna is �, where � as before is the projection of the baseline B in the line
of sight from the radar to the point P .

For this and the examples in the rest of this chapter, let us assume a system configuration

where we treat each antenna as a complete radar system, that is, we transmit and receive signals

from both positions and record the echo from each at each. This will usually be the appropriate

model for spaceborne platforms, where synchronization of multiple satellites is challenging,

though not impossible. For our purposes, the only di↵erence between this approach and one in

which we transmit at a single position and receive at two locations is the change from a factor

of 2 to a factor of 4 in the phase accumulated for each wavelength of extra path length �. Under

the two transmitter assumption the factor is 4, hence the measured signals at antennas 1 and

2 respectively are then

s1(t) = a exp[�j
4⇡

�
(r(t)�

�(t)

2
)] (17.7)

and

s2(t) = a exp[�j
4⇡

�
(r(t) +

�(t)

2
)] (17.8)

where both r and � vary with echo time as we are imaging a surface. Instead of adding these

two signals, we form the product of s1 with the conjugate of s2, to form the interferometric
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image i:

i(t) = s1(t) · s2(t)
⇤

= a exp[�j
4⇡

�
(r(t)�

�(t)

2
)] · a exp[+j

4⇡

�
(r(t) +

�(t)

2
)]

= a
2 exp[j

4⇡

�
B cos(✓(t)� ↵)] (17.9)

The measured interferogram phase �(t) for a point on the surface then yields ✓ for that point,

if the other parameters are known:

�(t) = arg [i(t)] (17.10)

✓(t) = arcsin[
��(t)

4⇡B
] + ↵ (17.11)

Recall that our goal here is to measure the topography at point P . Completing the triangle

shown in fig.17.2, we see that we can obtain the height from P to the altitude z of the platform

as

z = r cos ✓(t) (17.12)

In other words, the InSAR phase at each point on the surface can be interpreted as the elevation

of that point, or more precisely, the distance below the platform of every point.

A more subtle point here is that we have assumed that the two echoes received at a time

t correspond to exactly the same point on the ground, which will not be true if the ranges

from the point to the two antennas di↵er. The signals must be aligned in time for the phase

to have the relation of eq. 17.9, so that rather than a simple multiplication, we compute the

correlation of the two signals and select the phase at the correlation peak. Hence we are in

fact implementing a correlation interferometer instead of the multiplying interferometer. Once

the signals are properly aligned so that echoes from each point on the surface match in both

channels, the multiplying equation results hold.

17.4 Geometrical interpretation of phase di↵erence

The discussion of the the multiplying interferometer in section 17.3 uses a simplification in

which we modeled the incoming wavefront as a plane wave, an approximation that holds for a

target at infinite distance. We can be more accurate and accommodate objects at any distance
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if we use a more general geometry and interpret the measurements geometrically as path length

di↵erences rather than as angle of arrival. The more general configuration is shown in fig. 17.3.

We note that we quantify the distances to the two antennas as r1 and r2, without requiring

plane wave incidence, so that the signals we receive and measure as interferometric phase may

be given in terms of the di↵erence r1 � r2:

s1(t) = e
�j( 4⇡� r1�wt)

s2(t) = e
�j( 4⇡� r1�wt)

s1(t)s
⇤
2(t) = e

�j 4⇡
� (r1�r2)

so the interferometer phase � = 4⇡
� (r1 � r2). Note that we have omitted the signal amplitude

a in these equations as we have already established that it does not a↵ect the phase retrieval.
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Figure 17.3: Path length di↵erences. The distances from the point of interest to
the two antennas are r1 and r2, and the InSAR phase is the di↵erence of the ranges
multiplied by 4⇡

� .
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17.5 Measuring topography without the parallel ray approxi-

mation

Accurate determination of topographic elevation requires solving for the two triangles illustrated

in fig. 17.3. Consider first the triangle formed by the two antennas and the point to be imaged

P . We relate the ranges r1 and r2 to the baseline length |B| using the law of cosines:

r
2

1 = r
2

2 + |B|
2
� 2r2|B| cos(

⇡

2
� ✓ + ↵)

= r
2

2 + |B|
2
� 2r2|B| sin(✓ � ↵)

Rearranging to find the enclosed angle,

2r2|B| sin(✓ � ↵) = r
2

2 � r
2

1 + |B|
2 (17.13)

|B| sin(✓ � ↵) =
r
2
2
� r

2
1
+ |B|

2

2r2

=
(r2 + r1)(r2 � r1) + |B|

2

2r2

=̇
2r2(r2 � r1) + |B|

2

2r2

=
�2r2 + |B|

2

2r2

=
��

4⇡
+

|B|
2

2r2
(17.14)

Once we have calculated sin(✓�↵), we use that quantity to solve for the height z as before. It

is also worth noting that eq. 17.14 reduces to our previous result (eq. 17.11) when r2 >> |B|.

17.6 Measurement accuracy

We have seen that we can relate the phase observed in a radar interferometer to the topographic

elevation of a surface. Let us now see how accurately we can make that determination, and

what factors in a radar system contribute most significantly to the error in measurement. Note

that we can make several kinds of errors, two of which are i) phase errors (�) and ii) tilt errors

(↵). The e↵ect of each error class is di↵erent: phase errors are uncorrelated from point to point,

while tilt errors tilt the entire output image.
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We can quantify the uncertainty of our height (z) determination by computing the partial

derivatives of the height with respect to our system parameters.

Measuring phase. The interferometer resolves height through measurement of the phases

of radar echoes. We need to be able to relate the accuracy of these phases to system parameters,

such as SNR. To quantify this, refer to fig. 17.4. The phase we observe � is the angle of the

Figure 17.4: Phase noise. We measure a phase � that is the angle of the sum of a
complex (vector) signal plus a noise term. The higher the signal to noise ratio, that
is the ratio of the vector lengths, the smaller the phase error will be.

vector sum of the signal and a noise term. The ratio of the lengths of the signal and noise is

the square root of the signal to noise ratio, because the lengths of the vectors are amplitude

and not power quantities:
|s|

|n|
=

p
(SNR) (17.15)

The measured phase error �� will be

�� = arctan
|n| sin ✓

|s|+ |n| cos ✓

= arctan
sin ✓p

(SNR) + cos ✓

The noise term |n| and its direction ✓ will not be constant for every measurement, thus the

phase error �� can only be described by its statistics. In a model where the noise is assumed
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to be drawn from a bivariate Gaussian distribution, we can model the pdfs of the angle as a

uniform random variable and of the amplitude as a Rayleigh random variable. For unit variance

of the bivariate Gaussian in both axes, we obtain

p✓(✓) =
1

2⇡
, ✓ = [0, 2⇡) (17.16)

and

p|n|(|n|) = 2|n| exp(|n|2), |n| = [0,1) (17.17)

Then the first and second moments of �� would be

µ1 =

Z 1

0

Z
2⇡

0

arctan
|n| sin ✓p

(SNR) + |n| cos ✓
p✓(✓)p|n|(|n|)d✓d|n| (17.18)

and

µ2 =

Z 1

0

Z
2⇡

0

(arctan
|n| sin ✓p

(SNR) + |n| cos ✓
)2p✓(✓)p|n|(|n|)d✓d|n| (17.19)

from which we can calculate the standard deviation ��. These integrals are complicated to

derive analytically, but can be readily computed numerically. Fig. 17.5 shows numerical eval-

uations (black dots) for several values of SNR, along with a good approximation that is often

used for InSAR phase noise:

�� =

p
1 + 2SNR

SNR

1

2
p
N

(17.20)

where N is the number of complex pixels averaged, or ‘looks.’ Increasing the number of looks

has a similar e↵ect as increasing SNR as both represent a coherent sum that adds signal in

phase and noise by power only.

Phase errors. Now let us return to the accuracy of our elevation estimates. We derived

a relation between the height z of a surface and InSAR phase in two coupled equations, which

we repeat:

|B| sin(✓ � ↵) =
��

4⇡
+

|B|
2

2r2
(17.21)

and then solve for height:

z = r cos ✓ (17.22)

Our needed sensitivity is how z varies with �, or the derivative @z
@� . But our two equations do

not yield this result straight-forwardly, so instead we compute intermediate derivatives @✓
@� and
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Figure 17.5: Phase noise as a function of SNR. InSAR phase noise decreases as the
SNR increases. Black dots show numerical evaluation of eq. 17.19, and the solid line
shows the useful approximation eq. 17.20. The approximate expression includes the
number of looks (here 1), as averaging over pixels to form looks leads to the signal
adding coherently with the noise adding incoherently. Thus increasing looks has a
similar e↵ect as increasing SNR. Both improve the accuracy as the square root of
the increase.

@z
@✓ , whose product is the needed relation. So our approach is to calculate first

@

@✓
|B| sin(✓ � ↵) =

@

@�
[
��

4⇡
+

|B|
2

2r2
]

|B| cos(✓ � ↵) @✓ =
�

4⇡
@�

and then infer
@✓

@�
=

�

4⇡

1

|B| cos(✓ � ↵)
(17.23)

Noting that uncertainties in ↵ and ✓ are equivalent save for change in sign, repeating a

simpler argument for @z
@✓ ,

@z

@✓
= r sin ✓

Now we compute the product to get the desired derivative:

@z

@�
=

@z

@✓

@✓

@�
=

�

4⇡

r sin ✓

|B| cos(✓ � ↵)
(17.24)

Stating this in terms of the uncertainties in z and �, �z and ��, respectively,

�z =
�

4⇡

r sin ✓

|B| cos(✓ � ↵)
�� (17.25)

We can get a feel for how accurate this might be in practice by looking at some nominal
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system parameters. Suppose we can measure � to an accuracy of about 0.1 rad, or about 6
�
.

In an aircraft system, assuming an orientation angle ↵=0, with r = 10 km, a wavelength of

0.06 m, look angle 30
�
, and baseline distance 1 m, our height accuracy would be

�z =
0.06

4⇡

10000 · 0.5

1 · 0.866
· 0.1

= 2.8m

So with such an aircraft system the contribution to measurement error from phase noise is 2.8

m. A similar set of computations for the error due to tilt, and noting that uncertainty in ↵ has

the same e↵ect but with negative sign as uncertainty in ✓, follows from the derivative of z with

respect to ✓ we calculated above. In terms of uncertainties then,

�z = r sin ✓ �✓

which for the aircraft system example here, and assuming we can measure the tilt to 0.001 rad,

�z = 10000 · 0.5 · 0.001

= 5m

Thus you can see that for this system, if the uncertainties in the system are as used here, the

overall accuracy will be dominated by tilt rather than phase noise errors.

In a spaceborne implementation, we will very often use two separate satellites, or a single

satellite in a nearly repeating orbit, to form the interferometer baseline. The use of multiple

platforms allows us to choose the baseline length, since we are not restricted to a single structure

supporting two antennas, which is constrained by the size of the orbiting platform. Why is this

helpful? Suppose we can measure the relative orbit position accuracy across-track to 10 cm,

which is easily achievable for many orbital systems today. Then the accuracy of the virtual tilt

angle ↵ is 10 cm/|B| rad. For 100 m satellite separation, �↵ = 0.1/100 = 10�3, while for a 1

km baseline �↵ = 10�4.

For this configuration, both the uncertainty due to phase noise (eq.17.25) and tilt decrease

with baseline length. So it might seem that the best accuracy would result from allowing the

baseline length to grow as large as possible. For an aircraft system there is a limit to the baseline
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length set by the dimensions of the aircraft itself, but for two satellites very large separations

are possible. But, as we are about to see, longer baselines lead to more noise in the phase

measurement, and hence an engineering tradeo↵ exists in the baseline length design.

17.7 Decorrelation

We see that the error in our measurement is minimized for as |B| becomes larger and larger,

so it might seem that we should always seek to maximize |B|. But there is another e↵ect that

increases phase noise if we let |B| grow without limit. This additional noise source is called

baseline decorrelation noise, and it arises because we have viewed the surface from two view

points that are dissimilar.

Physically what is happening is at each resolution element we measure the coherent sum of

reflected waves from each individual scattering center in that element. If we change the viewing

geometry, the waves will add in a di↵erent fashion and the average phase will not be preserved

(fig. 17.6). We want to determine the degree to which the phases from the sums of all the

uinc1uinc2

Resolution element

Figure 17.6: Spatial decorrelation noise. For each resolution element, we observe
the coherent sum of the reflected waves from each scattering center in the element.
If we change the incidence angle, here from uinc1 to uinc2, the waves will add to a
di↵erent value as their line of sight paths di↵er. The mean phase of the total return
wave (�)will vary as the wave directions change.

points � are related to each other, or, more formally, correlated.

For this calculation we consider the radar return from a resolution element defined using
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Figure 17.7: Spatial decorrelation geometry. Quantities needed to calculate the
correlation between two radar echoes as we vary the separation of the incidence
angles for each signal. The phase of a reflected wave from a single scatterer P

changes as the line of sight distance y sin ✓ from the center of the resolution element
changes.

ground range coordinates where the along-track (azimuth) coordinate is x, and the across-track

y. Referring to fig. 17.7, the left-right dimension represents a slice in the y direction, with the

x direction into the page. We model the total signal s1 measured at antenna 1, at incidence

angle ✓1 corresponding to uinc1, as the sum of returns from all points on the surface:

s1 =

Z Z
f(x� x0, y � y0) exp [�j

4⇡

�
(r + y sin ✓1)]w(x, y)dxdy (17.26)

where r is the range to the center of the resolution element (x0, y0), w(x, y) is the impulse

response of the system, and f(x� x0, y � y0) is the complex reflectivity of surface position.

Similarly, for s2:

s2 =

Z Z
f(x� x0, y � y0) exp [�j

4⇡

�
(r + y sin ✓2)]w(x, y)dxdy (17.27)

The complex product s1s⇤2 is thus the following complicated-looking integral:

s1s
⇤
2 =

Z Z Z Z
f(x� x0, y � y0)f

⇤(x0 � x0, y
0
� y0) ·

exp[�j
4⇡

�
y(sin ✓1 � sin ✓2)]w(x, y)w

⇤(x0, y0)dxdydx0dy0 (17.28)
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We can greatly simplify this expression if we assume that the scattering at each point on the

surface is uncorrelated from every other point, so that the autocorrelation function of the surface

reflectivity is a �-function:

< f(x, y)f⇤(x0, y0) >= �
0
�(x� x

0
, y � y

0) (17.29)

reducing the integral to

< s1s
⇤
2 >= �

0

Z Z
exp[�j

4⇡

�
y cos ✓�✓]|w(x, y)|2dxdy (17.30)

where ✓ = (✓1 + ✓2)/2 and �✓ = ✓1 � ✓2. Normalizing the average < s1s
⇤
2
> to unity at zero

separation defines the spatial correlation of the interferogram, which tells us how well related

two echoes are as we vary the separation of the look angles. We define the correlation of the

two signals as the magnitude of the normalized cross product | < s1s
⇤
2
> |. We recognize eq.

Baseline length

Correlation

0
0

1

Bc

Figure 17.8: Correlation from idealized impulse response. If the radar impulse is
well-characterized by a sinc() function, the degree of correlation as we increase the
baseline length falls o↵ as a triangle function, reaching zero at a maximum baseline
length Bc, denoted the critical baseline.

17.30 as the Fourier transform with respect to �✓ of the square of the impulse response. If

the impulse response is sinc(x) = sin⇡x
⇡x , then the transform of its square is a triangle function,

which normalized to express correlation yields,

⇢spatial = 1�
2 cos ✓�yd✓

�
(17.31)

�y being range resolution projected onto the ground. Changing the dependence on angle to
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Aircraft C� band system : ⇠ 100m

Satellite L� band system : ⇠ 5000m

Satellite C� band system : ⇠ 1250m

Table 17.1: Typical InSAR critical baselines.

dependence on baseline length, we can define B? as the component of the baseline perpendicular

to the line of sight, and thus the di↵erence angle

d✓ =
B?
r

(17.32)

Combining this with eq. 17.31 we obtain a similar triangle function that goes to zero when the

baseline reaches a critical value Bc = �r
2 cos ✓�y

. The critical baseline represents the maximum

distance allowed between antennas if the interferogram phase is to be of nonzero average. In

a practical system, we must limit the baseline to a value somewhat smaller than the critical

value to keep the correlation at an acceptable level. Thus again we have a trade o↵ to make:

the baseline needs to be long enough to be sensitive to topographic variation but not so long

as to be poorly correlated.

It is useful to keep a few typical values in as a starting point for the design of an InSAR

system. Table 17.1 lists several values of Bc for airborne and spaceborne platforms at common

wavelengths and moderate (⇠5-10 m) resolution. Keeping the noise from decorrelation at an

acceptable level, we would prefer to operate at about 10 - 20% of Bc. But that value tends to

be too long to implement on an aircraft or a single satellite. Thus, for aircraft we usually have a

relatively short baseline and make up for the �-sensitivity with high SNR, while for spacecraft

we often prefer a single satellite in a repeat-pass mode, our next topic.
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17.8 Decorrelation and SNR

It may seem that decorrelation and signal to noise ratio are related, and in fact they are di↵erent

ways of describing the same statistics of radar measurements. We can readily derive one from

the other1.

Let’s begin by defining two di↵erent measurements of a repeating signal plus a variable

noise component, as we illustrated above in fig. 17.4. Denote these two measurements as

m1 = s+ n1

m2 = s+ n2

where s is the common signal vector and n1, n2 are the noise components of each. As before,

the ratio of signal power to noise power is the SNR:

SNR =
|s|

2

|ni|
2

(17.33)

We calculate the correlation ⇢ of the two measurements through the usual definition:

⇢ =
< m1 m

⇤
2
>p

< m1 m
⇤
1
>
p
< m2 m

⇤
2
>

=
< (s+ n1) (s+ n2)⇤ >p

< (s+ n1) (s+ n1)⇤ >
p
< (s+ n2) (s+ n2)⇤ >

We can assume that the signal and noise components are independent and thus uncorrelated,

as are the two noise instances. The expectations in eq. 17.34 then reduce to

⇢ =
|s|

2

|s|2 + |n|2

=
1

1 + SNR�1

As we might expect, if the SNR grows very large, ⇢ approaches unity. And if the SNR goes to

zero, so does the correlation. We can use either SNR or ⇢ to describe the statistics of our phase

measurements. Sometimes it will be more useful to employ the SNR measure, and sometimes

the decorrelation will prove more valuable.

1We often mix the terms correlation and decorrelation, which is fine as long as we remember that correlation
(⇢) = 1 - decorrelation.
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17.9 Repeat-track Orbital Interferometry

We have just seen that we would like to use baselines of several hundred meters in length for

spaceborne interferometric observations, and such distances are too large for single spacecraft

construction. The way around this is either to use two spacecraft flying in formation (often

very expensive!) or to use one spacecraft flying in a repeat orbit.

Recall that we have modeled the return from a resolution element as the sum of echoes

from a randomly distributed set of scatterers on the ground. What happens if we view the

same region again at a later time? If none of the scatterers has moved, the return will be

exactly the same except for the system noise component. Thus repeat-orbit geometries can

form interferometers over unchanging terrain.

What if the scatterers have indeed moved around? If the motions are random and on the

order of a wavelength or more in size, the sum of the echoes will have a di↵erent propagational

phase and there will no longer be correlation between the two radar echoes. It will be the same

as if we had imaged the area with a spatial baseline exceeding the critical value.

But if the random motion is much smaller, we have a tool for characterizing surface changes

at the wavelength scale. Using an argument following eqs. 17.26 - 17.30 and allowing the position

of each scatterer to move according to a Gaussian-distributed distance in each dimension, we

can show that the amount of decorrelation from surface movement is related to amount of

motion and wavelength by

⇢temporal = exp[�
1

2
(
4⇡

�
)2[�2

y sin
2
✓ + �

2

z cos
2
✓]] (17.34)

where we define ⇢temporal as the correlation for temporally-spaced observations, and �y and �z

are the rms y and z motions. As was the case for spatial decorrelation, the temporal decorrela-

tion will be at an acceptably low level as long as the motions are smaller than a large fraction

of a wavelength.

As long as the temporal correlation is high, which means that the random motion of scat-

terers in each resolution element is small, we can proceed as we did in the fixed array case above

and form interferograms from the spaceborne images. We need to preserve the phase of each

image to be able to calculate the phase di↵erences, so we will require complex valued images,

as we needed for the multiplying interferometer described earlier.

An example of an elevation (topography) map derived from a set of repeat pass spaceborne
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radar images is shown in fig. 17.9. These data were acquired over the island of Hawaii by the

Sentinel-1A and -1B spacecraft between Nov. 2019 and March 2020. The complex interferogram

resulting from the multiplying interferometer formed by two satellite passes yields the height,

and in this figure several interferograms were averaged to reduce system noises. Elevation is

shown as color, with contour lines added every 1000 m of altitude.
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Figure 17.9: Elevation map of island Hawaii derived from repeat pass Sentinel-1A
and -1B radar satellites. Estimates from several interferograms are averaged to
reduce system noise. Brightness is radar backscatter magnitude, height coded as
color. Contour lines depict heights at 1000, 2000, 3000, and 4000 m.

17.10 Motion Measurements

The main di↵erence between the repeat orbit implementation and the fixed two-element array

is that the two images are acquired at di↵erent times. This leads to sensitivity to mean motion

of each resolution element, as the phase di↵erence can change systematically, shifting the mean

value of the phase di↵erence but without appreciably a↵ecting its variance.

To see this, suppose that instead of random motion, the surface scatterers move together

toward or away from the radar. In this case, as a good approximation the phase of each

scatterer’s echo changes by the same amount. Thus there will be no decorrelation, but instead

an average phase change will be observed in the interferogram.
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Velocity v

Antenna 1, t1

Antenna 2, t2

r1
r2

Displacement
Δx = u (t2 - t1)

Figure 17.10: Ocean current geometry. An aircraft system for observing ocean
currents in which a patch of ocean is first observed at time t1 and range r1 (solid line
airframe) by an antenna mounted forward on the aircraft body, and at a second time
t2 with range r2 (dotted line airframe) by an antenna mounted aft on the aircraft. If
there is a current u on the surface, the range will change by�x sin ✓ = u·(t2�t1)·sin ✓
in the time it takes the aircraft to fly the distance between its two antennas.

We can illustrate an InSAR system measuring the surface at two di↵erent times by an

example of an aircraft measuring ocean currents (fig. 17.10). In this implementation, a patch

of ocean is first observed at time t1 and range r1 (solid line airframe) by an antenna mounted

forward on the aircraft body, and at a second time t2 with range r2 (dotted line airframe) by

an antenna mounted aft on the aircraft. In the case when there is no motion of the surface,

the two measurements will be identical and the interferogram phase will be zero. If there is

a current u on the surface, the range will change by �x sin ✓ = u · (t2 � t1) · sin ✓ in the time

it takes the aircraft to fly the distance between its two antennas. For an aircraft traveling at

velocity v, with antennas separated by baseline B, t2�t1 = B/v. The observed phase di↵erence

will be proportional to the line-of-sight component of the current velocity, and scaled by the

sine of the incidence angle:

�� =
4⇡

�
�x sin ✓

=
4⇡

�
u (t2 � t1) sin ✓

=
4⇡

�

u

v
B sin ✓
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So for a swath-imaging radar interferogram, a map of �� gives the surface current distri-

bution toward the radar. Computing the accuracy of a velocity measurement using the same

logic we employed for the elevation interferometer, we derive:

�u =
�

4⇡

v

B sin ✓
�� (17.35)

For typical aircraft system parameters,

0.1 m/s ⇡
0.06

4⇡

200

2 sin 30
0.1 rad (17.36)

The velocity uncertainty of about 0.1 m/s is just what is needed for ocean current obser-

vations. But if we use a much longer temporal baseline than the short times available on the

single aircraft implementation, we can greatly improve the sensitivity to subtler motions. Let

us then look at a satellite implementation, where the time between observations can be weeks

to years. In this case we will find it more useful to use a phase sensitivity equation of form:

�� =
4⇡

�
uLOS (t2 � t1) (17.37)

where uLOS is the radar line of sight component of velocity. We can also recognize �r =

uLOS (t2� t1) as the total line of sight displacement over the time interval �t = (t2� t1), which

leads to a slightly di↵erent form of the sensitivity equation:

�r =
�

4⇡
�� (17.38)

The deceptively simple equation shows the power of the repeat pass satellite implementation.

Let us look at a spaceborne C-band radar satellite interferogram, for which

0.005 m/s ⇡
0.06

4⇡
0.1 rad (17.39)

For a modest phase uncertainty of 0.1 rad, we can measure a displacement of 5 mm. Depending

on how long a time span we can use to form an interferogram, we can measure very slow

rates indeed. For example, a one year interferogram yields 5 mm/yr sensitivity. This delicate

sensitivity to motion permits observations of very detailed motions.

An example deformation image is shown in fig. 17.11. This image depicts the line of sight
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displacement coincident with an eruptive event on the island of Hawaii during the first half of

2018. Data were acquired by the Sentinel-1A and -1B spacecraft between 6 MAR 2018 and 28

JUN 2018; the phase di↵erence of each interferogram was scaled by �
4⇡ to yield the change in

range. Motion is seen mainly along the east rift zone of Kilauea volcano. The rest of the image

is fairly stationary, but changes in atmospheric water vapor content lead to apparent motions.

For this reason multiple interferograms are averaged for many geophysical investigations, as

was done here.
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Figure 17.11: Surface deformation at Kilaeua volcano in Hawaii. Image presents
line of sight displacement coincident with an eruptive event on the island of Hawaii
during the first half of 2018. Data were acquired by the Sentinel-1A/1B spacecraft
between 6 MAR 2018 and 28 JUN 2018. The phase di↵erence in each interferogram
scaled by �/4⇡ yields the change in range. Motion is seen mainly along the east rift
zone of Kilauea volcano. The rest of the image is fairly stationary, but changes in
atmospheric water vapor content lead to apparent motions. For this image, multiple
interferograms were averaged to reduce the errors from the variable atmosphere.

17.11 Nonzero baselines

In the two examples previous, we derived elevation and deformation estimates from radar

interferograms. We found that separating antenna locations spatially permits us to infer heights,

while separating antennas temporally yields sensitivity to motion. It is rather straightforward

to create a spatial baseline with zero temporal o↵set by using a physical array of antennas, but
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when we try to implement a temporal baseline it is very challenging to have zero spatial o↵set.

It is generally hard to have a spacecraft, for example, return to exactly to the same spot in

space at both acquisition times. So we must ask how this will a↵ect our motion measurements.

We are asking what happens when the across-track component of the baseline is not zero.

In that case, we get contributions from both motion and topography. We need to determine

the relative sizes of these contributions, and how they can they be separated in order to achieve

the greatest accuracy. We begin with an equation for total phase that includes both e↵ects.

� = �
4⇡

�
|B| sin(✓ � ↵)�

4⇡

�
�r (17.40)

The total phase measured has two components, one from antenna separation in space that

depends on surface topography (through z = r cos ✓), and one that depends on any line of

sight displacement �r between observation times. There are two main approaches in common

use to isolate each, one denoted the two-pass method and one the three-pass method. For this

discussion, let us assume that we are most interested in surface deformation and that the

topographic signal is what we would like to remove from our interferogram.

Two-pass method. The first term on the right hand side of eq. 17.40 is the contribution

from the parallax between the two incidence directions. This phase goes to zero if the baseline

length is zero, which was the assumption in the derivation we used for a motion interferometer.

But it is hard to achieve this in practice, as even what we refer to as repeat orbits do not repeat

exactly. Separations from 100’s to 1000’s of meters are common.

Even if we cannot control satellites to near zero baselines, cross-track orbit knowledge, and

thus the InSAR baseline, is often available at the cm level. Further, for many applications, and

many parts of the Earth, the topography itself may be known to a few meters or less. In the

two-pass method, we use the orbit location and topography information to compute the phase

from variations in elevation. We then subtract the modeled phase from the measured total

phase and what remains is the contribution from deformation.

We found in eq. 17.25 how �z depends on ��, which inverted yields

�� =
4⇡

�

|B| cos(✓ � ↵)

r sin ✓
�z (17.41)

and thus we can compute how much phase error we might expect from uncertainty in topography

or orbital position. Substituting nominal spacecraft C-band repeat pass parameters, we let
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|B|=1000 m, ↵=0, ✓ = 45�, r=800 km, and �z=1 m, and obtain �� ⇡ 0.26 rad. This corresponds

to a line of sight deformation uncertainty of �/4⇡ · 0.26 = 1.3 mm. In many cases the remaining

phase error is small compared to the desired deformation phase.

Three-pass method. We will not always be able to remove the topography-related artifact

from our interferograms. This will most often happen when we do not know the topography

su�ciently well, or at all, when we analyze an interferogram for crustal deformation. This can

be the case for parts of the Earth when topography is either unknown or changeable, and is

almost always the case when we are studying other planets. All is not lost, however, as we

can use the measurements themselves to derive and remove the topography, as long as we have

three satellite passes rather than two.
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Figure 17.12: Three-pass method. This geometry pertains if we have three passes
over our area of interest, rather than two. We form two interferometers, one from
A1, A2, and P (solid lines), and one from A1, A20, and P (dashed lines). Comparing
the phases from each allows us to remove the topography phase term (see text).

Refer to fig. 17.12. Using the parallel ray approximation to keep things simple, the phase

from the unprimed coordinates will be

� = �
4⇡

�
|B| sin(✓ � ↵) (17.42)
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and the phase from the primed coordinates is

�
0 = �

4⇡

�
|B

0
| sin(✓ � ↵

0) (17.43)

Note that the two measurements each yield the same estimate of ✓, or implied elevation. Our

goal is to compute one from the other in order to eliminate the topographic dependence. Their

ratio still depends on topography through ✓

�
0

�
=

|B
0
| sin(✓ � ↵

0)

|B| sin(✓ � ↵)
(17.44)

but we can eliminate that dependence by correcting the measured phase for the ‘flat-Earth’

phase, that is the phase that would have been measured in the absence of topography2 (fig.

17.13). Defining as �flat the corrected phase after subtracting the flat-Earth phase at look

Point P

θ

Height z

θflat

Reference surface

True topography

Figure 17.13: Flat Earth phase: the phase pattern that would be observed using
an imaging geometry identical to the acquisition under question but assuming that
there is no topography present. The look angle for the flat Earth phase is denoted
✓flat.

angle ✓flat

�flat = �
4⇡

�
[|B| sin(✓ � ↵)� |B| sin(✓flat � ↵)] (17.45)

Since ✓ ⇡ ✓flat, we can simplify eq. 17.45 using

✓ = ✓flat + �✓ (17.46)

2Note that if we are using a spherical Earth rather than a truly flat Earth, the reference would be along the
curved surface.
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sin(✓ � ↵) = sin(✓flat � ↵+ �✓)

⇡ sin(✓flat � ↵) + cos(✓flat � ↵)�✓

so that

�flat = �
4⇡

�
|B| cos(✓flat � ↵)�✓ (17.47)

Under these approximations, the flattened phase is now proportional to the perpendicular

component of the baseline rather than the parallel component, and to the topographic distortion

�✓ directly. So now when we form the ratio

�
0
flat

�flat
=

|B
0
| cos(✓flat � ↵

0)

|B| cos(✓flat � ↵)
=

B
0
?

B?
(17.48)

it no longer depends on topography. Consider again the total phase equation resulting from

both topography and deformation, but this time in terms of flattened phase:

�flat = �
4⇡

�
|B| cos(✓flat � ↵)�

4⇡

�
�r (17.49)

Now, further suppose that the time interval corresponding to the primed coordinates is when

the point P moves closer to the radar by a distance �r, with no motion in the time covered by

the unprimed interferogram. Then we can restate the deformation phase equation using the

two flattened phase measurements:

�
0
flat �

B
0
?

B?
�flat = �

4⇡

�
�r (17.50)

From this we see that we can acquire two interferograms over the same area, and use one

to correct for the topographic phase term to yield the deformation phase. This does require

knowledge of when deformation occurs, or at least a common rate of displacement, to be able to

isolate it from the topography. But it does allow us to be able to form images of displacement

when the actual surface shape is unknown.


