Handout 49

Backprojection InSAR

Why consider backprojection

- Standard data products should be user-friendly
 - Geocoded to common coordinates
 - InSAR phase corrections applied
- SLCs consistent with these allow easier analysis by non-specialists and specialists alike
- No need for intermediate format such as range-Doppler
 - Fewer resampling steps
 - Automatically applies motion compensation

Computational burden

- Very large data volumes
- With N radar images, we produce N(N-1)/2 interferograms
- Ex: Sequence of 100 observations
 -> 4950 interferograms
- Must coregister many interferogram pairs

We used range-Doppler algorithm to date

- Convolutional processing applies the matched filter
 - Computationally efficient due to FFT
 - Robust for poorly known orbits
 - But applies same filter everywhere so phase corrections needed
- Data are produced in range-Doppler space and need phase compensation
- InSAR analysis requires precise coregistration and viewing/topographic corrections

Traditional InSAR: 2 Phase corrections needed

Observed phase (no deformation):

$$\phi_{obs} = -\frac{4\pi}{\lambda} \overset{\wedge}{u_{elev}} \cdot B$$

Flat-Earth correction:

$$\phi_{flat} = -\frac{4\pi}{\lambda} \hat{u}_{ref} \cdot B$$

Topographic correction:

$$\phi_{topo} = -\frac{4\pi}{\lambda} \left(\stackrel{\wedge}{u_{elev}} - \stackrel{\wedge}{u_{ref}} \right) \cdot B$$

InSAR phase compensation Need to remove topographic 'nuisance' term

Observed fringe pattern

Hawaii 20100904-20100928 Processed from CSK Raw data

Topographic term

Deformation terms (+noise)

Review: forming the synthetic aperture

- To form the synthetic aperture, we phase shifted (quadratic phase) and delayed (migration correction) each echo so that all pulses added up in phase with each other
- We implemented this as a convolutional filter as an efficient computational approach

Processor flow using range-Doppler

- Cost driver likely the storage of range-Doppler SLCs
 - Needed for every imaged scene
 - Larger than raw data files

Backprojection SLC formation

- One of the earliest algorithms proposed for SAR imaging
- Was impractical due to computational inefficiency and lack of accurate platform knowledge
- Modern computers and orbit tracking enable approach
- ✓ Forms ideal matched filter
- ✓ Automatically applies phase corrections if DEM used
- ✓ SLCs produced in lat/lon or other desired geometry

Recall the motion compensation correction

- We chose a desired r(t) : apply a correction phase and delay term so that range is quadratic with time or x distance
- Computed matched filter for convolutional processing

We altered signal phase and delay

- Motion compensation baseline and time delay
 - b=r_{act}-r (mocomp baseline)
 - τ=2b/c
- Motion compensation phase shift

•
$$\phi_{\text{baseline}} = -4\pi/\lambda (r_{\text{act}} - r)$$

Backprojection algorithm

- For each point on ground, compute time delay and phase of radar pulse from total propagation distance
 - Find r_{act} for each pulse

•
$$\tau_{pulse} = 2 r_{act}/c$$

- $\phi_{\text{pulse}} = -4\pi/\lambda \cdot r_{\text{act}}$
- Sum these coherently to form image

Sample range echo for each pulse at proper time, then shift phase

Shift phase by
$$\phi_{\text{pulse}}$$
: $s(\tau_{\text{pulse}}) e^{-j \frac{4\pi}{\lambda} \phi_{\text{pulse}}}$

Calculating the SLC

- Algorithm: add all echoes illuminating a point in phase
- Automatically compensates topographic phase if DEM included

DEM accuracy affects focus

Processor flow - backprojection

 Backprojection avoids creating/storing range-Doppler intermediate products

Two example system cases

- Examples using ALOS strip map and Sentinel burst processing for wide swaths
- Added image formation processing burden eased through GPU architecture (cheap if not competing with currency miners)
- Data products more amenable to InSAR analysis

ALOS: A simple example

- L-band, strip mode, 20 km aperture
- GPU pipelined implementation

Geocoded amplitude image, Kilauea

Interferograms from simple cross multiplication

Sentinel 1A/B - TOPS imaging

- Sentinel 1 TOPS mode permits large and frequent coverage but products complex
- Standard product hard to use due to carrier phase
- Very precise coregistration needed
- Products can be resampled to common coordinates but phase compensation requires expertise

LO SLC processing

- Dealiasing computationally expensive and very intricate though elegant
- Backprojection same for all modes
- Short integration time makes backprojection efficient

TOPS integration window

For target P at $f_{Dop,0}$ wrt burst midpoint and TOPS steering angle θ :

$$f_{Dop,0} = \frac{2\nu}{\lambda} \frac{x}{r} + \frac{2\nu}{\lambda} \theta$$

where $\theta = c_1 t + c_0$

$$\rightarrow t = \frac{\frac{r\lambda}{2v^2}f_{Dop,0} - \frac{rc_0}{v}}{1 + \frac{rc_1}{v}}$$

Interferogram formation – by user

Backprojection

Standard (Yague-Martinez et al., 2016)

External orbit state DEM vectors Master burst Slave burst Geometric prediction Master SLC Slave SLC coregistration resampling shifts Spectral shift filtering de-ramping Azimuth rigid shift correction Spectral shift filtering Subswath/Slice-wise estimated azimuth shift based on ESD re-ramping ESD Master burst Slave burst (filt, coreg) (filt) Interferogram formation Interferogram

Sentinel 1B backprojection products

 Standardized, geocoded, phase corrected InSAR enables huge potential community

Island of Hawaii

Geocoded SLCs

Backprojected phase corrected Sentinel-1B data facilitate easy interferogram analysis

User-friendly interferograms

User-friendly products

- Simplified time series view of Kilauea eruption

User-friendly products

- Simplified time series view of Kilauea eruption

29 JAN 2018 - 11 APR 2018

11 APR 2018 – 05 MAY 2018

Product comparison

• End products are very similar

From L1 SLC

• Choice based on efficiency and ease of use

From LO Raw

Cross-interferogram

Why some groups use backprojection today

- Product generation from range-Doppler SLCs difficult for both producer and end user
- Backprojection
 - Generates user-friendly products directly
 - Simplified SLC processing stream
 - Simplified interferogram generation
 - Computationally efficient with GPU implementation
- -> No need to create/store range-Doppler products