Backprojection InSAR



Why consider backprojection

* Standard data products should be user-friendly
* Geocoded to common coordinates
* InSAR phase corrections applied

* SLCs consistent with these allow easier analysis by
non-specialists and specialists alike

* No need for intermediate format such as range-
Doppler
* Fewer resampling steps
e Automatically applies motion compensation



Computational burden

e \Very large data volumes

 With N radar images, we produce
N(N-1)/2 interferograms

* Ex: Sequence of 100 observations
-> 4950 interferograms

* Must coregister many
interferogram pairs

N radar images
in time sequence



We used range-Doppler algorithm
to date

* Convolutional processing applies the matched filter
 Computationally efficient due to FFT
* Robust for poorly known orbits

* But applies same filter everywhere so phase corrections
needed

* Data are produced in range-Doppler space and
need phase compensation

* InSAR analysis requires precise coregistration and
viewing/topographic corrections



Traditional INSAR: 2 Phase corrections

needed

Observed phase (no deformation):
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INSAR phase compensation
Need to remove topographic ‘nuisance’ term

Topographic
term

Deformation
terms (+noise)

Observed fringe pattern

Hawaii 20100904-20100928
Processed from CSK Raw data



Review: forming the synthetic
aperture
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* To form the synthetic aperture, we phase shifted (quadratic phase)
and delayed (migration correction) each echo so that all pulses
added up in phase with each other

 We implemented this as a convolutional filter as an efficient
computational approach



Processor flow using range-Doppler

e Cost driver likely the storage of range-Doppler SLCs
 Needed for every imaged scene
e Larger than raw data files
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Backprojection SLC formation

* One of the earliest algorithms proposed for SAR
Imaging

* Was impractical due to computational inefficiency
and lack of accurate platform knowledge

* Modern computers and orbit tracking enable
approach

v'Forms ideal matched filter
v’ Automatically applies phase corrections if DEM used
v'SLCs produced in lat/lon or other desired geometry



Recall the motion compensation
correction

 We chose a desired r(t) : apply a correction phase and
delay term so that range is quadratic with time or x
distance

 Computed matched filter for convolutional processing
A\
Desired flight track is linear translation

Actual flight track

_.7® Point to be imaged




We altered signal phase and
delay

* Motion compensation baseline and time delay
* b=r,,r (mocomp baseline)
e 1=2b/C

 Motion compensation phase shift
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Backprojection algorithm

* For each point on ground, compute time delay and
phase of radar pulse from total propagation
distance
* Find r,for each pulse
° Tpulsezz Mact /C

° ¢pu|se='4n/7‘* * Fact

 Sum these coherently to form image



Sample range echo for each pulse
at proper time, then shift phase

Signal s(t)
Tpulse
time
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Calculating the SLC

* Algorithm: add all echoes illuminating a point in
phase

e Automatically compensates topographic phase if
DEM included

kth pulse illumirating point X
Ll L] _ Spaecraft
R > track

Transmit pulses

. —j Er(x,k)
r(x,k) i(x) =X S(r(x, k)) e 7 a Y
r(x,k) is distance from
spacecraft to point X at

pulse k

Ground to be imaged
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Processor flow - backprojection

* Backprojection avoids creating/storing range-Doppler

intermediate products
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Two example system cases

* Examples using ALOS strip map and Sentinel burst
processing for wide swaths

* Added image formation processing burden eased

through GPU architecture (cheap if not competing
with currency miners)

* Data products more amenable to InSAR analysis



ALOS: A simple example

* L-band, strip mode, 20 km aperture
* GPU pipelined implementation

Geocoded amplitude image, Kilauea

Interferograms %
from simple ’
Cross

multiplication
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Sentinel 1A/B - TOPS imaging

* Sentinel 1 TOPS mode permits large and frequent
coverage but products complex

* Standard product hard to use due to carrier phase
* Very precise coregistration needed

* Products can be resampled to common coordinates
but phase compensation requires expertise



LO SLC processing
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TOPS integration window

For target P at fj,, o wrt burst
midpoint and TOPS steering angle O:
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Interferogram formation — by user

Standard (Yague-Martinez et al.,2016)  Backprojection
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Sentinel 1B backprojection products

 Standardized, geocoded, phase corrected InSAR
enables huge potential community

Island of Hawaii

Geocoded SLCs

Backprojected phase
corrected Sentinel-1B data

facilitate easy
interferogram analysis

User-friendly
interferograms




User-friendly products

- Simplified time series view of Kilauea eruption




User-friendly products

- Simplified time series view of Kilauea eruption




Product comparison

* End products are very similar
* Choice based on efficiency and ease of use

From L1 SLC From LO Raw Cross-interferogram




Why some groups use backprojection
today

* Product generation from range-Doppler SLCs
difficult for both producer and end user

* Backprojection
e Generates user-friendly products directly
e Simplified SLC processing stream
e Simplified interferogram generation
* Computationally efficient with GPU implementation

-> No need to create/store range-Doppler products



